
7 Numerical Integration

7.1 Elementary Algorithms

Let us suppose we are confronted with a function f(x) tabulated at the points
x1, x2, x3...xn, not necessarily equally spaced. We require the integral of f(x)
from x1 to xn. How do we proceed? The simplest algorithm we can use, valid
both for equally and unequally spaced points, is the trapezoidal rule. The
trapezoidal rule assumes that the function is linear between the tabulated
points. With this assumption, it can be seen that the integral from x1 to x2

is given by
∫ x2

x1

f(x)dx ≈ 1

2
h(f1 + f2)

where h = x2 − x1.

u

u

u

u

�
�
�

�
�
�
�
��

x1 x2

f1

f2

This equation can be extended to n points for equally spaced points
∫ xn

x1

f(x)dx ≈ h(
1

2
f1 + f2 + f3 . . .+

1

2
fn) (1)

and
∫ xn

x1

f(x)dx ≈ 1

2
(x2−x1)(f1+f2)+

1

2
(x3−x2)(f2+f3) . . .+

1

2
(xn−xn−1)(fn−1+fn)

for unevenly spaced points.

Exercise 7.1: Use the trapezoidal rule to evaluate the integral
∫ 2

1
x sin xdx

1

with 10 points. Double the number of points and re-evaluate the integral.
The “exact” value of this integral is 1.440422. Rewrite your program to
evaluate the integral at an arbitrary number of points input by the user. Are
1000 points better than 100 points?

For equally spaced points the trapezoidal rule has an error O(h3), which
means that the error for each interval in the rule is proportional to the cube
of the spacing. This means, of course, that if the interval size is reduced, the
error decreases. In terms of the total number of points (N) used, the total
error for the trapezoidal rule can be expressed as O(1/N2) – i.e. if we double
the number of points, the error goes down by a factor of 4. Eventually, how-
ever, we run into the law of diminishing returns – either we hit the limit of
machine accuracy, or the cumulative error involved in using many tiny inter-
vals begins to build and becomes unacceptably high. In addition, if we use
very small intervals, we pay dearly in computer time for the many function
evaluations. If the function is complex and thus expensive to compute, this
can become prohibitive.

Despite these disadvantages, the trapezoidal rule is adequate for most ap-
plications, and it is the only choice if your function is tabulated at unequally
spaced points. For those applications which require more accuracy than the
trapezoidal rule permits, or which are attempting to integrate very complex
functions, “higher order” integration schemes are available. The most popu-
lar is Simpson’s rule which is based on parabolic interpolation. The formula
for Simpson’s rule, a three-point formula, is:

∫ x3

x1

f(x)dx ≈ h
[

1

3
f1 +

4

3
f2 +

1

3
f3

]

+O(h5) (2)

The “extended” version of this formula over N steps (note that N must be
odd) is:

∫ xN

x1

f(x)dx ≈ h

3
[f1 + 4f2 + 2f3 + 4f4 + ...+ 2fN−2 + 4fN−1 + fN]+O

(

1

N4

)

Exercise 7.2: Calculate the integral of Exercise 7.1 with Simpson’s rule
using 9 points in the interval (1,2), and then repeat the exercise with 19

2

points. Compare with the results from Exercise 7.1 for 10 and 20 points
respectively.

Note that if you have a tabulated function with an even number of points,
you can still use Simpson’s rule. Simply evaluate the integral over the first
interval using the trapezoidal rule and then use Simpson’s rule for the re-
maining odd number of points.

Even higher-order formulae can be used to carry out numerical integra-
tion, but, in practice, these are hardly ever used. There are advanced tech-
niques, which we will not go into, which can extract virtually any desired
precision from the trapezoidal rule and Simpson’s rule, and thus it is hardly
ever necessary to utilize higher-order formulae.

Exercise 7.3: To explore one of these “advanced techniques”, go back to
the program you wrote for Exercise 7.1 and rewrite it to calculate the
value of the integral with N = 30 and 80 points. Setting x = 1/N2 and
y = the value of the integral for each value of N defines two points. The
program should find the equation of the line between these two points. The
y-intercept of this equation should be a very accurate approximation to the
integral. Why? Since x = 1/N2 †, the y-intercept (where x = 0) corresponds
to N = ∞. The program should print out the value of the integral and its
deviation from the “exact” value 1.440422 for N = 30, 80, and “∞” points.

7.2 Gaussian Integration

In the previous section, we found that we could obtain significantly higher
accuracy in numerical integration using the same number of points in a given
interval by changing the weighting used for the points. For instance, in
trapezoidal integration, each point, except for the end points, enter into the
formula (equation 1) with equal weights. In Simpson’s rule (equation 2) the
points are not given equal weights. Note that the odd abscissas are given
weights of 2/3, whereas the even abscissas are given weights of 4/3.

†Why do we set x = 1/N2? Because the error in the trapezoidal method goes as
O(1/N2), and thus the error in the determination of the integral should scale linearly with
1/N2.

3

It turns out that if we relax the restriction that the abscissas should be
evenly spaced in the interval, we can then choose abscissas and correspond-
ing weights that yield very high accuracies. This is the basis of Gaussian

integration. We do not have the time to go into this method in great detail,
but it is important that you are at least acquainted with this method of
integration, as it is commonly and widely used.

Gaussian integration is based on integrals of the form:

∫ b

a
W (x)f(x)dx

which can be approximated by the sum

N
∑

i=1

wif(xi)

The weights (wi) and the abscissas (xi) can be chosen, for a given W (x),
to make the approximation exact if f(x) is a polynomial. If f(x) can be “well
approximated” by a polynomial, then the integration formula above yields
very high accuracy. Different W (x)’s, of course, lead to different choices for
the abscissas and weights. W (x) = 1, for instance, leads to “Gauss-Legendre”
integration, W (x) = (1− x2)−1/2 leads to Gauss-Chebyshev integration, etc.
We will concentrate here on the simplest and the most useful case, Gauss-
Legendre integration.

For a given number of abscissas, it is possible to compute the xi’s and
the wi’s for Gauss-Legendre integration. We won’t go into how this is ac-
tually done; details can be found in Numerical Recipes. Below, find a table
listing the abscissas and weights for a number of different values of N. These
abscissas are based on the interval [-1,1]:

4

Gauss-Legendre Integration

N xi wi

2 ±0.57735 1.000000
3 0 0.888889

±0.774597 0.555556
4 ±0.339981 0.652145

±0.861136 0.347855
5 0 0.568889

±0.538469 0.478629
±0.90618 0.236927

If your integration is not over the limits [-1,1], then the abscissas must
be transformed accordingly. For instance, if the interval is [a,b] instead of
[-1,1], then the new abscissas ti are given by:

ti =
a+ b

2
+

b− a

2
xi

and note that

dt =
b− a

2
dx

hence
∫ b

a
f(t)dt =

∫ 1

−1
f(

a+ b

2
+

b− a

2
x)

b− a

2
dx

thus:
∫ b

a
f(t)dt ≈ b− a

2

N
∑

i=1

wif(
a+ b

2
+

b− a

2
xi)

where the weights and abscissas are as displayed in the table above, and we
are assuming that W (x) = 1.

Exercise 7.4: Repeat exercise 7.1 using Gauss-Lengendre integration with
5 abscissas. Compare the accuracy with your results from exercises 7.1 and
7.2.

7.3 Multidimensional Integrals

Numerical integrations of functions of several variables over regions with
dimensions greater than one are very difficult to carry out. First, to get

5

sufficient precision, the numerical integration may involve literally tens of
thousands of function evaluations. Second, if the boundary of the integra-
tion region is complex, this can greatly complicate the procedure. Thus, if
possible, before resorting to multidimensional techniques, try to reduce the
dimension of your integral. Sometimes this may be done by exploiting the
symmetries of the integrand. For instance, if you are integrating a spherically
symmetric function over a spherical region, switch to spherical coordinates.
The integral will reduce to a one-dimensional integral! If this does not work,
and the function is otherwise fairly well behaved (for instance, is not strongly
peaked in a certain region), and you don’t require great accuracy, explore
Monte Carlo techniques (see next section). Otherwise, a multidimensional
integral can be attacked using one-dimensional techniques in the following
way:

Let us suppose we have the following integral:

I =
∫ x2

x1

dx
∫ y2(x)

y1(x)
dy
∫ z2(x,y)

z1(x,y)
f(x, y, z)dz

where the limits on the integrals define the region of integration in the usual
way. If we let

G(x, y) =
∫ z2(x,y)

z1(x,y)
f(x, y, z)dz

and

H(x) =
∫ y2(x)

y1(x)
G(x, y)dy

then
I =

∫ x2

x1

H(x)dx

The third integral for I can be evaluated using one of the one-dimensional
techniques discussed in §7.1. However, in this procedure H(x) will have to be
evaluated at a number of values of x, and this must be done by integrating
G(x, y), again using a one-dimensional technique for each of those values of
x. G(x, y), however, can only be evaluated by carrying out the first integral
for each value of x and y encountered in the evaluation of the second and
third integrals. Thus, while the third integral is evaluated only once, the
second integral is evaluated many times and the third integral many, many
times leading to a great number of function evaluations.

6

Example: Evaluate the integral

∫ 1

−1
dx
∫

√
(1−x2)

−
√

(1−x2)
(x2 + y2)dy

using two applications of the trapezoidal method. Note - this integral can

be reduced to a single integral in polar coordinates. The exact value of this

integral is π/2 = 1.570796. Here is some code that will do the job:

/*

Functions employed:

trap: carries out 1-D trapezoidal integration

integrand: evaluates the integrand

l1, l2: the limits

twoDtrap: implements 2-D trapezoidal integration

H: Carries out integration of the integrand for a given value of x

x: to make things easy, x is declared as an external variable, so that

we don’t have to pass it to each function

*/

#include <stdio.h>

#include <math.h>

double trap(double a, double b, double (*func)(double), int N);

double integrand(double y);

double l1();

double l2();

double twoDtrap(double a, double b,int N);

double H(double y1, double y2);

double x;

int N;

int main()

{

double a = -1.0;

7

double b = 1.0;

double result;

printf("\nEnter number of points for both x and y > ");

scanf("%d",&N);

result = twoDtrap(a,b,N);

printf("\nIntegral = %e\n",result);

return(0);

}

/* twoDtrap carries out trapezoidal integration on H between the limits

y1 = l1(x), y2 = l2(x) and x = a and x = b */

double twoDtrap(double a, double b, int N)

{

double h,integral;

int i;

h = (b-a)/(double)(N-1);

integral = 0.0;

x = a;

integral += 0.5*H(l1(),l2());

x = b;

integral += 0.5*H(l1(),l2());

x = a+h;

for(i=2;i<N;i++) {

integral += H(l1(),l2());

x += h;

}

integral *= h;

return(integral);

}

double H(double y1, double y2)

8

{

return(trap(y1,y2,integrand,N));

}

/* Remember that x is external, so it need not be passed to l1 and l2 */

double l1()

{

return(-sqrt(1-x*x));

}

double l2()

{

return(sqrt(1-x*x));

}

/* Only y is passed to integrand, as x is external */

double integrand(double y)

{

return(x*x + y*y);

}

/* Note that trap is written generally, so that any function (func) can

be passed to it. Study carefully how a function is passed to another

function, and how the passed function is referred to inside the second

function. Note that in this case, only one variable can be passed to

func in this case y. */

double trap(double a, double b, double (*func)(double), int N)

{

double h,integral,x;

int i;

if(a == b) return(0.0);

h = (b-a)/(double)(N-1);

integral = 0.0;

integral += 0.5*((*func)(a) + (*func)(b));

9

x = a+h;

for(i=2;i<N;i++) {

integral += (*func)(x);

x += h;

}

integral *= h;

return(integral);

}

Exercise 7.5: Evaluate the integral

∫ 1

−1
dx
∫ π/2

−π/2
x2 cos ydy

using two applications of the trapezoidal method. The exact value of this
integral is 4/3.

Exercise 7.6: The gravitational potential at a point (X, Y) due to an
infinitessimal mass (dm) at position (x, y) is given by

dV = −G
dm

r

10

where r is the distance between (x, y) and (X, Y). Calculate the gravitational
potential, V , for the square mass shown in the figure above at the point
(X, Y), which is in the plane of the square and lies outside of the square, by
integrating the above expression for dV over the mass. Note that the surface
density σ of the square is a function of position: σ = (x2 + y2) kg/m2, and
that dm = σdxdy. The square has dimensions 2m × 2m and is centered
on the origin. Prompt the user for the (X, Y) coordinates, and reprompt if
(X, Y) lies inside the square.

7.4 Monte Carlo Integration

This technique of numerical integration is named after the famous casino in
Monte Carlo not because it is risky or chancy, but because it uses random
numbers to carry out an integration. How does this work? Suppose we have
an integral of a function f over a given volume V and we choose N random
points in that volume. Then,

∫ ∫ ∫

V
fdV ≈ V 〈f〉 ± V

(

〈f 2〉 − 〈f〉2
N

)
1

2

(3)

where 〈f〉 is the arithmetic mean of f over the N random points:

〈f〉 = 1

N

N
∑

i=1

f(xi)

and

〈f 2〉 = 1

N

N
∑

i=1

f 2(xi)

Note that the error term in equation (1) is proportional to
√

1/N , which
is one of the great disadvantages of the Monte Carlo method of numerical
integration; the error reduces very slowly with increasing N , and thus many
random points are needed for high accuracy. Nonetheless, Monte Carlo in-
tegration is sometimes “the only way to go”, especially if the region of inte-
gration is complicated.

Before we proceed any further with Monte Carlo integration, we should
discuss in a bit more detail the generation of random numbers by a computer.
All “C” compilers come with a pair of library routines

11

void srand(unsigned seed);

int rand(void);

The rand function is the actual random number generator, but the random
number generator must be initialized by srand by supplying srand with
an arbitrary unsigned integer, the “seed”. Note that the same initializing
value of seed will always return the same random number sequence. The
function rand returns, upon each call, a random number in the range 0 to
the largest positive value the computer can produce for variables of type int;
this number is available in stdlib.h as RAND MAX. Thus, if we want a random
floating point number in the range 0.0 – 1.0 we can use the code fragment:

x = (float)rand()/(RAND_MAX+1.0);

Unfortunately, rand is not a good enough random number generator,
even for government work. It does not give truly random sequences, and
this can be fatal for Monte Carlo integrations. It is much better to use
the function float ran1(long *idum) (see Numerical Recipies for details).
This function is available in comphys.c and defined in comphys.h and, as we
saw in Chapter 2, should be initialized by setting idum to a negative number
thus:

long idum;

float rn;

/* Initialize ran1 */

idum = -1;

rn = ran1(&idum);

/* Use ran1 */

rn = ran1(&idum);

The function ran1, which returns a random floating point number be-
tween 0.0 and 1.0 is good enough for government work and is much superior
to rand. Note, however, that if you use the same negative number seed idum

each time, you will get the same sequence of random numbers. It is thus
better to use the scheme outlined in Chapter 2 to set idum = -1*now, where
now is a time variable.

Now, back to Monte Carlo integration. Suppose we want to integrate a
function g over an irregular region W that is difficult to sample randomly.

12

What do we do? We find a region V that contains W and which is easy to
sample randomly - say, for instance, a rectangle or a cube. We then define
f = g at points inside of W but f = 0 at points inside of V but outside of
W . It is in our own interest to make V fit around W as snugly as possible,
as the zero values of f will increase the factor 〈f 2〉 − 〈f〉2 in the error term
of equation (1) and will reduce the effective value of N .

For an example, let us take the integral in the example in § 7.3. The
region of interest W is a circle with radius 1 and center at (0,0). We take
the region V to be a square with the same center (see below – 100 random
points are also plotted in region V). The Monte Carlo integration is carried
out by the following code:

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include "comphys.h"

#include "comphys.c"

#define N 100

int main()

{

float x,y,rn,r2,f,integral,V,sum,av,sum2,av2;

float error;

long i;

long idum = -1;

time_t now;

/* Use the time function to supply a different seed to the

random number generator every time the program is run */

now = time(NULL);

idum = -1*now;

/* Initialize random number generator */

rn = ran1(&idum);

13

/* Our region V that encloses W, a circle of unit radius,

is a square with sides of length 2. Thus, the area of

this square is 4 */

V = 4.0;

sum = 0.0;

sum2 = 0.0;

for(i=0;i<N;i++) {

/* Following gives x and y between -1.0 and 1.0 */

x = 2.0*ran1(&idum) - 1.0;

y = 2.0*ran1(&idum) - 1.0;

r2 = x*x + y*y;

/* Is the point in the region W? */

if(r2 <= 1.0) f = r2;

else f = 0.0;

/* Evaluate sums */

sum += f;

sum2 += f*f;

}

/* Calculate Integral and error */

av = sum/(float)N;

av2 = sum2/(float)N;

integral = av*V;

error = V*sqrt((av2-av*av)/(float)N);

printf("\nIntegral = %f +/- %f\n",integral,error);

return(0);

}

The result of the first 10 runs of this program (your numbers will be
different) with N = 100 are: 1.825, 1.640, 1.414, 1.700, 1.532, 1.571, 1.413,
1.600, 1.519, 1.745 each with a calculated error of about±0.130. The mean of
these determinations is 1.596±0.043 (where the error is the standard error of
the mean). If we increase N to 1000, we get the following run: 1.593, 1.574,
1.614, 1.589, 1.545, 1.531, 1.592, 1.570, 1.627, 1.579 each with a calculated
error of about ±0.042. The mean of these determinations is 1.581 ± 0.009.

14

-2
 -1
 0
 1
 2

-2

-1

0

1

2

W

V

Notice that increasing N by a factor of 10 decreased the error by a factor of
only about 3. A single run with N = 100000 gives 1.575±0.004. Recall that
the exact value of this integral is π/2 = 1.571.

The moral of the story is – run your Monte Carlo program many times
as the individual results are scattered around the true value.

Exercise 7.7: Use Monte Carlo integration to evaluate the integral in
Exercise 7.5. The program should prompt the user for N, the number
of random points used in the integration.

Exercise 7.8: Using Monte Carlo integration, find the center of mass of
a 2-D right triangle with base of length 1 and height of length 2. With the
right angle positioned at (0,0), the density varies as ρ = y sin x2 + 2. Recall
that the center of mass of a planar object is given by

X =
1

M

∫ ∫

xρdS

Y =
1

M

∫ ∫

yρdS

15

where
M =

∫ ∫

ρdS

Exercise 7.9: Repeat the problem of Exercise 7.6 using Monte Carlo
integration.

Exercise 7.10 The Ising Model: Monte Carlo methods may be used in
applications other than integration. Consider the following from atomic
physics. An Ising chain is a 1-D array made of N particles with spin. The
spin (s) of an individual particle can be either up (+1) or down (-1), and the
total energy of the chain is given by

E = −J
N−1
∑

i=1

sisi+1

The energy is a minimum when all the spins are the same. Consider an event
that randomly flips the spin of one of the particles in the array. Thermody-
namically, if that change results in a lower energy, it is highly probable. If
the change results in a higher energy, it will have a probability given by the
Boltzmann distribution

R = exp(−∆E/kT)

Write a program that will implement the following algorithm:
1) Generate a trial spin configuration consisting of N particles with random
spins si.
2) Pick a particle j randomly, flip its spin, and calculate the resulting new
energy Enew.
3) Accept the new configuration if Enew ≤ Eold. If Enew > Eold, then assign
a relative probability R given by the above equation. Generate a random
number 0 < r < 1. If R > r accept the new configuration. If not, restore the
old configuration as the accepted configuration and go back to step 2.
The above steps 2 → 3 should be incorporated into a for loop which will run
from l=1 to 5000. Print out l and the energy resulting from the configuration
decided upon in step 3 for each passage through the loop. Take the following
values for the constants: N = 50, J = 2.0, k = 0.001. Use Gnuplot to
plot out l versus E. Note that for low temperatures (T < 1000), the system

16

rapidly declines in energy and reaches equilibrium within the 5000 iterations.
For high temperatures, the energy simply fluctuates and does not reach equi-
librium. The Ising model can be used to simulate many quantum physical
systems. One example is magnetism. In a ferromagnetic material, individual
atoms have a net magnetic moment. Magnetization will occur when those
magnetic moments line up, and this represents the minimum energy config-
uration. In the presence of an external magnetic field, a macroscopic sample
of the material can be magnetized, but as the temperature increases, the
alignment of the magnetic moments becomes more chaotic. At sufficiently
high temperatures, no magnetization will occur.

17

