
Possible Graduate Projects for Computational Physics

You may select another topic for a Graduate project, but the projects below
will give you an idea of the depth expected in any project.

1) The Maximum Mass for a White Dwarf

The great astrophysicist, S. Chandrasekhar, did fundamental work on
the nature of white dwarfs and, in particular, discovered that the maximum
mass for a white dwarf is about 1.4 solar masses. Above that mass the white
dwarf either undergoes a helium or carbon detonation (depending on the
composition) or contracts to a neutron star.

Chandrasekhar’s work led to the derivation (see “An Introduction to the
Study of Stellar Structure, S. Chandrasekhar, Dover Publications 1939, 1967)
of the differential equation for the internal structure of a white dwarf:
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where y is related to the gravitational potential in the interior of the star,
x is the radial coordinate (x = 0 at the center of the star) and C is a mass
parameter which may vary from 1 to 0. As C → 0, the mass of the white
dwarf increases while the radius of the white dwarf tends to 0. The point
where the radius of the white dwarf is zero corresponds to a detonation or
collapse into a neutron star. This sets the maximum mass for a white dwarf,
called the Chandrasekhar Limit. Solutions for the above equation do not
exist for C ≤ 0. The density in the white dwarf, ρ, as a function of x is
related to y = y(x) in the following way:
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The value of x for which ρ reaches 0 corresponds to the surface of the star and
is denoted xs. The total mass of the white dwarf is given by the equation:
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where M is in grams, and A, B, and G have the numerical values: A =
6.002353 × 1022, B = 1.962044 × 106, and G = 6.6742 × 10−8. As pointed
out above, as C → 0, M approaches the maximum possible mass for a white
dwarf. Since one cannot find a solution for the differential equation at C = 0,
it will be necessary to compute M for various values of C approaching zero
and then extrapolate to determine the value of M for C = 0.

You may need to use the following power series expansion for y near x = 0
to start the numerical integration of the differential equation:
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where q2 = 1 − C.

2) The Restricted Three Body Problem

It turns out that the graviational three body problem, in which three
masses move under their mutual gravitational forces, cannot be solved in
closed form. This is even true if the motion is restricted to a plane, and even
if the three bodies consist of two massive bodies of masses M1 and M2 that
revolve in circles about their common center of mass and a third very small
(negligible in the sense that it does not affect the movements of M1 and M2)
mass m that moves in the gravitational field of M1 and M2. We assume that
m remains in the plane of motion of M1 and M2. This is called the restricted

three-body problem.
If M1 and M2 are separated by a distance a, then the angular velocity, ω

of their motion is given by

ω2 =
(M1 + M2)G

a3

We Introduce a coordinate system rotating with that angular velocity about
the center of mass of M1 and M2. In that coordiate system, M1 and M2 are
stationary. We take them to lie on the x-axis. Their coordinates on that axis
are:

x1 =
M2

M1 + M2

a, x2 =
M1

M1 + M2

a

where ~ω is along the z-axis. The equation of motion of m in the xy-plane is
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given by:

m
d2~r

dt2
= ~F1 + ~F2 − m~ω × (~ω × ~r) − 2m~ω ×

d~r

dt

where ~F1 and ~F2 are the gravitational attraction of M1 and M2 on m. Written
in terms of components, the two equations become
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Notice m does not appear in these equations. These equations may be fur-
ther simplified by “non-dimensionalizing” (left to the student). This can be
accomplished by variable changes:

ξ = x/a, η = y/a

ξ1 =
M2

M1 + M2

, ξ2 = −
M1

M1 + M2

= ξ1 − 1

With those substitutions the gravitational ’potential’ in the rotating coordi-
nate system, V , given by
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can be written:

V =
m(M1 + M2)G

a
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}

The student can verify that the partials ∂V/∂ξ and ∂V/∂η vanish at 5 points
(the Lagrangian points), two of them off the x-(ξ)axis (L4 and L5). An
interesting computational problem is to release the test particle near either L4

or L5 with near-zero velocity in the rotating coordinate system, and compute
the subsequent motion. Since L4 and L5 are semi-stable points for M2 <
0.04M1, the particle should execute a complex orbit about those points. For
more information, see Mechanics 3rd edition, by Symon, 1971 or any junior-
level or graduate-level text in Classical Mechanics.
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3) The Problem of Saturn’s Rings

Saturn’s rings are planar and exhibit a number of gaps, the most promi-
nent of which is Cassini’s division. The rings are made up of large numbers
of co-orbiting particles, some as small as a grain of dust, others a few meters
across. Immediately outside the rings orbit a number of small moons. It
has been known for many years that the orbital period of Mimas is exactly
twice that of a particle in Cassini’s division, and it is clear that the gravi-
tational force of Mimas on such a particle increases its eccentricity and thus
knocks it out of the gap. Thus, Mimas has cleared Cassini’s division via a
gravitational resonance. This situation is exactly the restricted three-body
problem in (2) above with Saturn as M1 and Mimas as M2. It is possible
to simulate the clearing of Cassini’s division by introducing a large number
(1000) of “test particles” in circular orbits between Saturn and the orbit of
Mimas and tracing their orbits with time.

4) The Partition Function of Hydrogen
The hydrogen atom has essentially an infinite number of bound energy

levels whose energies are given by the equation:

En = −R
(

1

n2
− 1

)

where R is the Rydberg constant with value 109677.58311 cm−1 (for hy-
drogen), and n is the principle quantum number of the energy level. The
partition function is given by

U(T ) =
∑

gi exp(−Ei/kT )

where gi is the statistical weight of the ith level, such that gn = 2n2, k is the
Boltzmann constant (use the value appropriate for the energy units used for
Ei) and T is the temperature in kelvins. The summation is over all bound

states, which, in a vacuum, is infinite, and converge on the ionization energy
Eion = R. However, in a plasma, the electric fields of neighboring atoms
and electrons strip some of the upper energy levels off effectively reducing
the ionization energy by a quantity ∆E. This means that the last energy
level in the summation is the one with energy just below Eion −∆E. Write a
program that will prompt the user for ∆E, calculate U(T ) for temperatures
between 1000 and 120,000 K, and plot it with gnuplot.
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5) Chaos in the Lorentz Model

It used to be believed that Newtonian mechanics was strictly determin-
istic, that is, give the position of a particle in space, and knowledge of all
the forces on it, it would be possible to predict its position at all later times.
However, in the early 1960’s, an MIT meteorologist Ed Lorenz was investigat-
ing the governing equations of weather and discovered a system of equations
that, while derived from Newtonian mechanics, were not deterministic, as
they displayed a property now known as “chaos” in that the solution was
extremely sensitive to the initial conditions. That system of equations is
given by:

dx

dt
= σ(y − x)

dy

dt
= rx − y − xz

dz

dt
= xy − bz

Write a program that will integrate these three differential equations simulta-
neously, and then figure out how to display the solution in three dimensions
in gnuplot. Use σ = 10, b = 8/3 and r = 28. Use the initial conditions x = 1,
y = 1, and z = 20.01. Experiment with the initial conditions to see how the
system behaves. Try different values for σ, b, and r to see if the system is
chaotic over the entire parameter space.

6) A project of your choosing

If you have a computational project of similar “difficulty” that you are
interested in, come to my office and describe it for me. If it is acceptable, I
will need from you early in the semester a short write-up (similar to those
above) describing the problem and what you will do to solve it.
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