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Abstract

We show that a version of Ramsey’s theorem for trees for arbitrary
exponents is equivalent to the subsystem ACA′0 of reverse mathemat-
ics.

In [1], a version of Ramsey’s theorem for trees is analyzed using tech-
niques from computability theory and reverse mathematics. In particular, it
is shown that for each standard integer n ≥ 3, the usual Ramsey’s theorem
for n-tuples is equivalent to the tree version for n-tuples. The main result
of this note shows that the universally quantified versions of these forms of
Ramsey’s theorem are also equivalent. Because there are so few examples
of proofs involving ACA′0 in the literature, we have included a somewhat
detailed exposition of the proof.

The main subsystems of second order arithmetic used in this paper are
RCA0, which includes a comprehension axiom for computable sets, and ACA0,
which appends a comprehension axiom for sets definable by arithmetical
formulas. For details on the axiomatization of these subsystems, see [4].
More about the subsystem ACA′0 appears below.

If 2<N is the full binary tree of height ω, we may identify each node with
a finite sequence of zeros and ones. We refer to any subset of the nodes as a
subtree, and say that a subtree S is isomorphic to 2<N if every node of S has
exactly two immediate successors in S. Formally, S ⊆ 2<N is isomorphic to
2<N if and only if there is a bijection b : 2<N → S such that for all σ, τ ∈ 2<N,
we have σ ⊆ τ if and only if b(σ) ⊆ b(τ). (For sequences, σ ⊆ τ means σ is
an initial segment of τ , and σ ⊂ τ means σ is a proper initial segment of τ .)
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For any subtree S, we write [S]n for the set of linearly ordered n-tuples of
nodes in S. All the nodes in any such n-tuple are pairwise comparable in the
tree ordering. In [1], the following version of Ramsey’s theorem is presented.

TT(n): Fix k ∈ N. Suppose that [2<N]n is colored with k colors. Then
there is a subtree S isomorphic to 2<N such that [S]n is monochromatic.

In applying TT(n), we often think of the coloring as a function f : [2<N]n → k,
in which case S is monochromatic precisely when f is constant on [S]n.

Let ΦX
e,t(m)↓ denote a fixed formalization of the assertion that the Turing

machine with code number e, using an oracle for the set X, halts on input
m with the entire computation bounded by t. We will assume that t is a
bound on all aspects of the computation, including codes for inputs from
the oracle. This formalization can be based on Kleene’s T -predicate or any
similar arithmetization of computation. In RCA0, we use the notation Y ≤T
X to denote the existence of two codes e and e′ such that

∀m(m ∈ Y ↔ ∃tΦX
e,t(m)↓)

and
∀m(m /∈ Y ↔ ∃tΦX

e′,t(m)↓).
The preceding formalizes the notion that Y is Turing reducible to X if and
only if both Y and its complement are computably enumerable in X.

As in [2], we can also use this notation to formalize ACA′0. Given any set
X, let Y = X ′ denote the statement

∀〈m, e〉(〈m, e〉 ∈ Y ↔ ∃tΦX
e,t(m)↓),

where 〈m, e〉 denotes an integer code for the ordered pair (m, e). To formalize
the nth jump for n ≥ 1, we write Y = X(n) if there is a finite sequence
X0, . . . , Xn such that X0 = X, Xn = Y , and for every i < n, Xi+1 = X ′i. In
this notation, Y = X ′ if and only if Y = X(1), and we will often write X ′′

for X(2). The subsystem ACA′0 consists of ACA0 plus the assertion that for
every X and every n, there is a set Y such that Y = X(n).

Using all this terminology, we can prove a formalized version of the im-
plication from TT(n) to TT(n + 1), including a formalized computability
theoretic upper bound.

Lemma 1. (RCA0) Suppose R is a tree isomorphic to 2<N, f : [R]n+1 → k
is a finite coloring of the (n + 1)-tuples of comparable nodes of R, and both
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R ≤T A and f ≤T A. Suppose that A′′ exists. Then we can find a tree S
and a coloring g : [S]n → k such that S ≤T A′′, g ≤T A′′, S is a subtree
of R isomorphic to 2<N, and every monochromatic subtree of S for g is also
monochromatic for f .

Proof. Working in RCA0, suppose R, f , and A are as in the statement of the
lemma. We will essentially carry out the proof of Theorem 1.4 of [1], replacing
uses of arithmetical comprehension by recursive comprehension relative to
A′′. Toward this end, given a sequence P = {ρτ | τ ⊆ σ} of comparable nodes
of R such that the sequence terminates in ρσ, define an induced coloring of
single nodes τ ⊃ ρσ by setting

fρσ(τ) = 〈{(~m, f(~m, τ)) | ~m ∈ [P ]n}〉

where the angle brackets denote an integer code for the finite set. Since
f ≤T A, for any finite set P we have fρσ ≤T A.

For each σ ∈ 2<N, define pσ, Tσ, and cσ as follows. Let ρ〈〉 be the root of
R and T〈〉 = R. Given ρσ and Tσ computable from A, use A′′ to compute a
cσ which is the greatest integer in the range of fρσ such that

∃ρ ∈ Tσ(ρ ⊃ ρσ ∧ ∀τ ∈ Tσ(τ ⊃ ρ→ cσ ≤ fρσ(τ))).

Using A′′, compute the least such ρ. Let T denote the subtree of Tσ iso-
morphic to 2<N defined by taking ρ as the root and letting the immediate
successors of each node be the least pair of incomparable extensions in Tσ
that are assigned cσ by fρσ . Because of the choice of cσ, T is isomorphic to
2<N, and its nodes can be located in an effective manner. (In [1], this T is
called the standard cσ-colored subtree of Tσ for ρ using fρσ .) Let ρσa0 and
ρσa1 be the two level one elements of T and let Tσaε be the subtree of T with
root ρσaε for each ε ∈ {0, 1}. Note that given any finite chain of elements
and colors {〈ρτ , cτ 〉 | τ ⊆ σ}, sufficiently large initial segments of each Tτ
can be computed to determine ρσa0, ρσa1, cσa0, and cσa1, using only A′′.
Consequently, the subtree S = {ρσ | σ ∈ 2<N} is computable from A′′.

Define g : [S]n → k by g(pσ1 , . . . , ρσn) = f(ρσ1 , . . . , ρσn , ρσa
n 0). Since

S ≤T A′′, we also have g ≤T A′′. By the construction of S, given any
increasing sequence of elements of S of the form ρ1 ⊂ ρ2 ⊂ · · · ⊂ ρn, and
extensions ρn ⊂ ρn+1 and ρn ⊂ ρn+2, we have fρn(ρn+1) = fρn(ρn+2), so
f(ρ1, . . . , ρn, ρn+1) = f(ρ1, . . . , ρn, ρn+2). Thus any monochromatic subtree
for g is also monochromatic for f , and the proof is complete.
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Extracting the computability theoretic content of the previous argument,
given a computable coloring of n-tuples we can find a monochromatic set
computable from 0(2n−2). This is not an optimal bound, since applying the
Strong Hierarchy Theorem to Theorem 2.7 of [1] yields a monochromatic
set computable from 0(n). However, the preceding result does enable us to
complete the proof of the next theorem, and avoids formalization of the long
proof of Theorem 2.7 of [1].

Theorem 2. (RCA0) The following are equivalent:

(1) ACA′0

(2) ∀nTT(n)

Proof. To prove that (1) implies (2), assume ACA′0 and let f : [2<N]n → k
be a coloring. By ACA′0, the jump f (2n−2) exists, so by discarding the odd
jumps we can find a sequence of sets X0, X1, . . . , Xn−1 such that X0 = f and
for each i, Xi+1 = X ′′i . Note that f ≤T X0 and 2<N ≤T X0. By Lemma 1,
for any Xi, given indices witnessing that a subtree isomorphic to 2<N and a
coloring of the (n−i)-tuples of that subtree are each computable from Xi, we
can find indices for computing an infinite subtree and a coloring of (n−i−1)-
tuples from Xi+1 satisfying the conclusion of Lemma 1. Thus, by induction
on arithmetical formulas (which is a consequence of ACA′0), we can prove the
existence of a sequence of indices, the last of which can be used to compute a
subtree Tn−1 and a function fn−1 : [Tn−1]

1 → k such that Tn−1 is isomorphic
to 2<N and any monochromatic subtree for fn−1 is also monochromatic for f .
Since ACA′0 includes RCA0 plus induction for Σ0

2 formulas, by Theorem 1.2 of
[1], Tn−1 contains a subtree which is monochromatic for fn−1 and isomorphic
to 2<N. This subtree is also monochromatic for f , so TT(n) holds for f .

To prove that (2) implies (1), assume RCA0 and (2). Given any coloring
of n-tuples of integers, f : [N]n → k, we may define a coloring g : [2<N]n → k
on n-tuples of elements of 2<N by

g(σ1, . . . , σn) = f(lh(σ1), . . . lh(σn))

where lh(σ) denotes the length of the sequence σ. Any monochromatic tree
for g contains an infinite path which encodes an infinite monochromatic set
for f . Thus, as noted in the proof of Theorem 1.5 of [1], ∀nTT(n) implies
the usual full Ramsey’s theorem, denoted by ∀nRT(n). ACA′0 can be deduced
from ∀nRT(n) by Theorem 8.4 of [3], or by applying Proposition 4.4 of [2].
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A typical proof of ∀nTT(n) would proceed by induction on n and require
the use of induction on Π1

2 formulas. In the preceding argument, the exis-
tence of the nth jump is used to push the application of induction down to
arithmetical formulas. The proof of Theorem 2 together with Proposition 4.4
of [2] provide a detailed exposition of a proof and reversal in ACA′0 and show
that the full versions of the usual Ramsey’s theorem, the polarized version
of Ramsey’s theorem, and Ramsey’s theorem for trees are all equivalent to
ACA′0 over RCA0.
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