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Abstract. We present some results about generics for computable Mathias

forcing. The n-generics and weak n-generics in this setting form a strict hierar-
chy as in the case of Cohen forcing. We analyze the complexity of the Mathias

forcing relation, and show that if G is any n-generic with n ≥ 3 then it satis-

fies the jump property G(n−1) = G′ ⊕ ∅(n). We prove that every such G has
generalized high degree, and so cannot have even Cohen 1-generic degree. On

the other hand, we show that G, together with any bi-immune A ≤T ∅(n−1),

computes a Cohen n-generic.

1. Introduction

Forcing has been a central technique in computability theory since it was intro-
duced (in the form we now call Cohen forcing) by Kleene and Post to exhibit a
degree strictly between 0 and 0′. The study of the algorithmic properties of Co-
hen generic sets, and of the structure of their degrees, has long been a rich source
of problems and results. In the present paper, we propose to undertake a similar
investigation of generic sets for (computable) Mathias forcing, and present some of
our initial results in this direction.

Mathias forcing was perhaps first used in computability theory by Soare in [11]
to build an infinite set with no subset of strictly higher degree. Subsequently, it
became a prominent tool for constructing infinite homogeneous sets for computable
colorings of pairs of integers, as in Seetapun and Slaman [9], Cholak, Jockusch, and
Slaman [2], and Dzhafarov and Jockusch [4]. It has also found applications in
algorithmic randomness, in Binns, Kjos-Hanssen, Lerman, and Solomon [1].

We show below that a number of results for Cohen generics hold also for Mathias
generics, and that a number of others do not. The main point of distinction is that
neither the set of conditions, nor the forcing relation is computable, so many usual
techniques do not carry over. We begin with background in Section 2, and present
some preliminary results in Section 3. In Section 4 we characterize the complexity of
the forcing relation, and in Section 5 we prove a number of results about the degrees
of Mathias generic sets, and about their relationship to Cohen generic degrees. We
indicate questions along the way we hope will be addressed in future work.
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2. Definitions

We assume familiarity with the terminology particular to Cohen forcing in com-
putability theory. (For background on computability theory, see [10]. For back-
ground on Cohen generic sets, see Section 1.24 of [3].) The definition of the Mathias
forcing partial order is standard, but its formalization in the setting of computabil-
ity theory requires some care. A slightly different presentation is given in [1, Section
6], over which ours has the benefit of reducing the complexity of the set of conditions
from Σ0

3 to Π0
2.

Definition 2.1.

(1) A (computable Mathias) pre-condition is a pair (D,E) where D is a finite
set, E is a computable set, and maxD < minE.

(2) A (computable Mathias) condition is a pre-condition (D,E), such that E
is infinite.

(3) A pre-condition (D∗, E∗) extends a pre-condition (D,E), written (D∗, E∗) ≤
(D,E), if D ⊆ D∗ ⊆ D ∪ E and E∗ ⊆ E.

(4) A set A satisfies a pre-condition (D,E) if D ⊆ A ⊆ D ∪ E.

By an index for a pre-condition (D,E) we shall mean a pair (d, e) such that d is
the canonical index of D and E = {x : Φe(x) ↓= 1}. By adopting the convention
that for all x, if Φe(x) ↓ then Φe(y) ↓∈ {0, 1} for all y ≤ x, it follows that Φe is
total if E is infinite, i.e., if (D,E) is a condition. Of course, if E is finite then Φe
may only be defined on a proper initial segment of ω.

The definition makes the set of all indices Π0
1. However, we can pass to a com-

putable subset containing an index for every pre-condition. Namely, define a strictly
increasing computable function g by

Φg(d,e)(x) =

{
0 if x ≤ maxDd,

Φe(x) otherwise.

Then the set of pairs of the form (d, g(d, e)) is computable, and each is an index for
a pre-condition. Moreover, if (d, e) is an index as well, then it and (d, g(d, e)) index
the same pre-condition. Formally, all references to pre-conditions in the sequel will
be to indices from this set, and we shall treat D and E as numbers when convenient.

Note that whether one pre-condition extends another is a Π0
2 question. By our

convention about partial computable functions, the same question for conditions is
seen to be Π0

1.
In what follows, a Σ0

n set of conditions refers to a Σ0
n-definable set of pre-

conditions, each of which is a condition. (Note that this is not the same as the
set of all conditions satisfying a given Σ0

n definition, as discussed further in the
next section.) We call such a set dense if it contains an extension of every condi-
tion, and define what it means to meet or avoid such a set as usual.

Definition 2.2. Fix n ∈ ω.

(1) A set G is Mathias n-generic if it meets or avoids every Σ0
n set of conditions.

(2) A set G is weakly Mathias n-generic if it meets every dense such set.

We call a degree generic if it contains a set that is n-generic for all n.
It is easy to see that for every n ≥ 2, there exists a Mathias n-generic G ≤T ∅(n)

(indeed, even G′ ≤T ∅(n)). This is done just as in Cohen forcing (see [6, Lemma
2.6]), but as there is no computable listing of Σ0

n sets of conditions, one goes through
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the Σ0
n sets of pre-conditions and checks which of these consist of conditions alone.

We pass to some other basic properties of generics. We refer to Mathias n-generics
below simply as n-generics when no confusion is possible.

3. Basic results

Note that the set of all conditions is Π0
2. Thus, the set of conditions satisfying a

given Σ0
n definition is Σ0

n if n ≥ 3, and Σ0
3 otherwise. For n < 3, we may thus wish

to consider the following stronger form of genericity, which has no analogue in the
case of Cohen forcing.

Definition 3.1. A set G is strongly n-generic if, for every Σ0
n-definable set of pre-

conditions P, either G satisfies some condition in P or G meets the set of conditions
not extended by any condition in P.

Proposition 3.2. For n ≥ 3, a set is strongly n-generic if and only if it is n-
generic. For n ≤ 2, a set is strongly n-generic if and only if it is 3-generic.

Proof. Evidently, every strongly n-generic set is n-generic. Now suppose P is a Σ0
n

set of pre-conditions, and let C consist of all the conditions in P. An infinite set
meets or avoids P if and only if it meets or avoids C, so every max{n, 3}-generic
set meets or avoids P. For n ≥ 3, this means that every n-generic set is strongly
n-generic, and for n ≤ 2 that every 3-generic set is strongly n-generic.

It remains to show that every strongly 0-generic set is 3-generic. Let C be a
given Σ0

3 set of conditions, and let R be a computable relation such that (D,E)
belongs to C if and only if (∃a)(∀x)(∃y)R(D,E, a, x, y). Define a strictly increasing
computable function g by

Φg(D,E,a)(x) =

{
ΦE(x) if (∃y)R(D,E, a, x, y) and ΦE(x) ↓,
↑ otherwise,

and let P be the computable set of all pre-conditions of the form (D, g(D,E, a)).
If (D,E) ∈ C then ΦE is total and so there is an a such that Φg(D,E,a) = ΦE . If, on
the other hand, (D,E) is a pre-condition not in C then for each a there is an x such
that Φg(D,E,a)(x) ↑. Thus, the members of C are precisely the conditions in P, so
an infinite set meets or avoids C if and only if it meets or avoids P. In particular,
every strongly 0-generic set meets or avoids C. �

As a consequence, we shall restrict ourselves to 3-genericity or higher from now
on, or at most weak 2-genericity. Without further qualification, n below will always
be a number ≥ 3.

Proposition 3.3. Every n-generic set is weakly n-generic, and every weakly n-
generic set is (n− 1)-generic.

Proof. The first implication is clear. For the second, let a Σ0
n−1 set C of conditions

be given. Let D be the class of all conditions that are either in C or else have no
extension in C, which is clearly dense. If n ≥ 4, then D is easily seen to be Σ0

n

(actually Π0
n−1) as saying a condition (D,E) has no extension in C is written

∀(D∗, E∗)[[(D∗, E∗) is a condition ∧ (D∗, E∗) ≤ (D,E)] =⇒ (D∗, E∗) /∈ C].
If n = 3, this makes D appear to be Σ0

4 but since C is a set of conditions only, we
can re-write the antecedent of the above implication as

D ⊆ D∗ ⊂ D ∪ E ∧ (∀x)[ΦE∗(x) ↓= 1 ∧ ΦE(x) ↓ =⇒ ΦE(x) = 1]
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to obtain an equivalent Σ0
3 definition. In either case, then, a weakly n-generic set

must meet D, and hence must either meet or avoid C. �

The proof of the following proposition is straightforward. (The first half is proved
much like its analogue in the Cohen case. See, e.g., [8], Corollary 2.7.)

Proposition 3.4. Every weakly n-generic set G is hyperimmune relative to ∅(n−1).
If G is n-generic, then its degree forms a minimal pair with 0(n−1).

Corollary 3.5. Not every n-generic set is weakly (n+ 1)-generic.

Proof. Take any n-generic G ≤T ∅(n). Then G is not hyperimmune relative to
∅(n+1), and so cannot be weakly (n+ 1)-generic. �

We shall separate weakly n-generic sets from n-generic sets in Section 5, thereby
obtaining a strictly increasing sequence of genericity notions

weakly 3-generic ⇐= 3-generic ⇐= weakly 4-generic ⇐= · · ·
as in the case of Cohen forcing. In many other respects, however, the two types of
genericity are very different. For instance, as noted in [2, Section 4.1], every Mathias
generic G is cohesive, i.e., satisfies G ⊆∗ W or G ⊆∗ W for every computably
enumerable set W . In particular, if we write G = G0 ⊕G1 then one of G0 or G1 is
finite. This is false for Cohen generics, which, by an analogue of van Lambalgen’s
theorem due to Yu [12, Proposition 2.2], have relatively n-generic halves. Thus, no
Mathias generic can be even Cohen 1-generic.

Question 3.6. What form of van Lambalgen’s theorem holds for Mathias forcing?

Another basic fact is that every Mathias n-generic G is high, i.e., satisfies G′ ≥T
∅′′. (See [1], Corollary 6.7, or [2], Section 5.1 for a proof.) By contrast, it is a
well-known result of Jockusch [6, Lemma 2.6] that every Cohen n-generic set G
satisfies G(n) ≡T G⊕ ∅(n). As no high G can satisfy G′′ ≤T G⊕ ∅′′, it follows that
no Mathias generic can have even Cohen 2-generic degree. This does not prevent a
Mathias n-generic from having Cohen 1-generic degree, as there are high 1-generic
sets, but we show this does not happen either in Corollary 5.6.

4. The forcing relation

Much of the discrepancy between Mathias and Cohen genericity stems from the
fact that the complexity of forcing a formula, defined below, does not agree with the
complexity of the formula. Our forcing language here is the typical one of formal
first-order arithmetic plus a set variable, X, and the epsilon relation, ∈.

We regard every Σ0
0 (i.e., bounded quantifier) formula ϕ with no free number

variables as being written in disjunctive normal form according to some fixed ef-
fective procedure for doing so. Call a disjunct valid if the conjunction of all the
equalities and inequalities in it is true, which can be checked computably. For each
i (ranging over the number of valid disjuncts), let Pϕ,i be the set of all n such that
n ∈ X is a conjunct of the ith valid disjunct, and Nϕ,i the set of all n such that
n /∈ X is a conjunct of the ith valid disjunct. Canonical indices for these sets can
be determined uniformly effectively from an index for ϕ.

Definition 4.1. Let (D,E) be a condition and let ϕ(X) be a formula with only
the set variable X free. If ϕ is Σ0

0, say (D,E) forces ϕ(G), written (D,E) 
 ϕ(G),
if for some i, Pϕ,i ⊆ D and Nϕ,i ⊆ D ∪ E. From here, extend the definition of
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(D,E) 
 ϕ(G) to arbitrary ϕ inductively according to the standard definition of
strong forcing (e.g., as in [3], p. 100, footnote 22, items (iii)–(v)).

Remark 4.2. If ϕ(X) is Σ0
0 with only the set variable X free and A is a set then

ϕ(A) holds if and only if there is an i such that Pϕ,i ⊆ A and Nϕ,i ⊆ A. Hence,
(D,E) 
 ϕ(G) if and only if ϕ(D ∪ F ) holds for all finite F ⊂ E.

Lemma 4.3. Let (D,E) be a condition and let ϕ(X) be a formula in exactly one
free set variable.

(1) If ϕ is Σ0
0 with no free number variables then the relation (D,E) 
 ϕ(G) is

computable.
(2) If ϕ is Π0

1, Σ0
1, or Σ0

2, then so is the relation (D,E) 
 ϕ(G).
(3) For n ≥ 2, if ϕ is Π0

n then the relation of (D,E) 
 ϕ(G) is Π0
n+1.

(4) For n ≥ 3, if ϕ is Σ0
n then the relation (D,E) 
 ϕ(G) is Σ0

n+1.

Proof. We first prove 1. If ϕ is as hypothesized and ϕ(D ∪ F ) does not hold
for some finite F ⊂ E, then neither does ϕ(D ∪ (F ∩ (

⋃
i Pϕ,i ∪ Nϕ,i))). So by

Remark 4.2, we have that (D,E) 
 ϕ(G) if and only if ϕ(D∪F ) holds for all finite
F ⊂ E ∩ (

⋃
i Pϕ,i ∪Nϕ,i), which can be checked computably.

For 2, suppose that ϕ(X) ≡ (∀x)θ(x,X), where θ is Σ0
0. We claim that (D,E)

forces ϕ(G) if and only if θ(a,D ∪ F ) holds for all a and all finite F ⊂ E, which
makes the forcing relation Π0

1. The right to left implication is clear. For the other,
suppose there is an a and a finite F ⊂ E such that θ(a,D ∪ F ) does not hold.
Writing θa(X) for the formula θ(a,X), let D∗ = D ∪ F and

E∗ = {x ∈ E : x > maxD ∪ F ∪
⋃
i

Pθa,i ∪Nθa,i},

so that (D∗, E∗) is a condition extending (D,E). Then if (D∗∗, E∗∗) is any exten-
sion of (D∗, E∗), we have that

D∗∗ ∩ (
⋃
i

Pθa,i ∪Nθa,i)) = (D ∪ F ) ∩ (
⋃
i

Pθa,i ∪Nθa,i)),

and so θ(a,D∗∗) cannot force θ(a,G). Thus (D,E) does not force ϕ(G). The rest
of 2 follows immediately, since forcing a formula that is Σ0

1 over another formula is
Σ0

1 over the complexity of forcing that formula.
We next prove 3 for n = 2. Suppose that ϕ(G) ≡ (∀x)(∃y)θ(x, y,X) where θ is

Σ0
0. Our claim is that (D,E) 
 ϕ(G) if and only if, for every a and every condition

(D∗, E∗) extending (D,E), there is a finite F ⊂ E∗ and a number k > maxF such
that

(1) (D∗ ∪ F, {x ∈ E∗ : x > k}) 
 (∃y)θ(a, y,G),

which is a Π0
3 definition. Since the condition on the left side of (1) extends (D∗, E∗),

this definition clearly implies forcing. For the opposite direction, suppose (D,E) 

ϕ(G) and fix any a and (D∗, E∗) ≤ (D,E). Then by definition, there is a b and
a condition (D∗∗, E∗∗) extending (D∗, E∗) that forces θ(a, b,G). Write θa,b(X) =
θ(a, b,X), and let F ⊂ E∗ be such that D∗∗ = D∗ ∪ F . Since θa,b(D

∗ ∪ F ) holds,
we must have Pθa,b,i ⊆ D∗ ∪ F and Nθa,b,i ∩ (D∗ ∪ F ) = ∅ for some i. Thus, if we
let k = maxNθa,b,i, we obtain (1).

To complete the proof, we prove 3 and 4 for n ≥ 3 by simultaneous induction on
n. Clearly, 3 for n− 1 implies 4 for n, so we already have 4 for n = 3. Now assume
4 for some n ≥ 3. The definition of forcing a Π0

n+1 statement is easily seen to be Π0
2
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over the relation of forcing a Σ0
n statement, and hence Π0

n+2 by hypothesis. Thus,
3 holds for n+ 1. �

We shall see in Corollary 5.2 in the next section that the complexity bounds in
parts 3 and 4 of the lemma cannot be lowered to Σ0

n and Π0
n, respectively. As a

consequence, n-generics only decide all Σ0
n−1 formulas, and not necessarily all Σ0

n

formulas.

Proposition 4.4. Let G be n-generic, and for m ≤ n let ϕ(X) be a Σ0
m or Π0

m

formula in exactly one free set variable. If (D,E) is any condition satisfied by G
that forces ϕ(G), then ϕ(G) holds.

Proof. If m = 0, then ϕ holds of any set satisfying (D,E), whether it is generic
or not. If m > 0 and the result holds for Π0

m−1 formulas, it also clearly holds for
Σ0
m formulas. Thus, we only need to show that if m > 0 and the result holds for

Σ0
m−1 formulas then it also holds for Π0

m formulas. To this end, suppose ϕ(X) ≡
(∀x)θ(x,X), where θ is Σ0

m−1. For each a, let Ca be the set of all conditions forcing
θ(a,X), which has complexity at most Σ0

n by Lemma 4.3. Hence, G meets or
avoids each Ca. But if G were to avoid some Ca, say via a condition (D∗, E∗), then
(D∗, E∗) would force ¬θ(a,G), and then (D,E) and (D∗, E∗) would have a common
extension forcing θ(a,G) and ¬θ(a,G). Thus, G meets every Ca, so θ(a,G) holds
for all a by hypothesis, meaning ϕ(G) holds. �

Remark 4.5. It is not difficult to see that if ϕ(G) is the negation of a Σ0
m formula

then any condition (D,E) forcing ϕ(G) forces an equivalent Π0
m formula. Thus, if

G is n-generic and satisfies such a condition, then ϕ(G) holds.

5. Degrees of Mathias generics

We begin here with a jump property for Mathias generics similar to that of
Jockusch for Cohen generics. It follows that the degrees d satisfying d(n−1) =
d′ ∪ 0(n−1) yield a strict hierarchy of subclasses of the high degrees.

Theorem 5.1. For all n ≥ 2, if G is n-generic then G(n−1) ≡T G′ ⊕ ∅(n).

Proof. That G(n−1) ≥T G′ ⊕∅(n) follows from the fact that G is high, as discussed
above. That G(n−1) ≤T G′ ⊕ ∅(n) is trivial for n = 2. To show it for n ≥ 3, we

wish to decide every Σ0,G
n−1 sentence using G′ ⊕ ∅(n). Let ϕ0(X), ϕ1(X), . . ., be a

computable enumeration of all Σ0
n−1 sentences in exactly one free set variable, and

for each i let Ci be the set of conditions forcing ϕi(G), and Di the set of conditions
forcing ¬ϕi(G). Then Di is the set of conditions with no extension in Ci, so if G
meets Ci it cannot also meet Di. On the other hand, if G avoids Ci then it meets
Di by definition. Now by Lemma 4.3, each Ci is Σ0

n since n ≥ 3, and so it is met
or avoided by G. Thus, for each i, either G meets Ci, in which case ϕi(G) holds by
Proposition 4.4, or else G meets Di, in which case ¬ϕi(G) holds by Remark 4.5. To
conclude the proof, we observe that G′ ⊕ ∅(n) can decide, uniformly in i, whether
G meets Ci or Di. Indeed, from a given i, indices for Ci and Di (as a Σ0

n set and a
Π0
n set, respectively) can be found uniformly computably, and then ∅(n) has only

to produce these sets until a condition in one is found that is satisfied by G, which
can in turn be determined by G′. �
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Corollary 5.2. For every n ≥ 2 there is a Π0
n formula in exactly one free set

variable, the relation of forcing which is not Π0
n. For every n ≥ 3 there is a Σ0

n

formula in exactly one free set variable, the relation of forcing which is not Σ0
n.

Proof. It suffices to prove the second part, as it implies the first by the proof of
Lemma 4.3. For consistency with Theorem 5.1, we fix n ≥ 4 and prove the result
for n− 1. If forcing every Σ0

n−1 formula were Σ0
n−1, then the proof of the theorem

could be carried out computably in G′ ⊕ ∅(n−1) instead of G′ ⊕ ∅(n). Hence, we
would have G(n−1) ≡T G′ ⊕ ∅(n−1), contradicting that G must be high. �

The following result is the analogue of Theorem 2.3 of Kurtz [8] that every
A >T ∅(n−1) hyperimmune relative to ∅(n−1) is Turing equivalent to the (n − 1)st
jump of a weakly Cohen n-generic set. The proof, although mostly similar, requires
a few important modifications. The main problem is in coding A into G(n−2),
which, in the case of Cohen forcing, is done by appending long blocks of 1s to the
strings under construction. As the infinite part of a Mathias condition can be made
very sparse, we cannot use the same idea here. We highlight the changes below, and
only sketch the rest of the details. Recall that a set is co-immune if its complement
has no infinite computable subset.

Proposition 5.3. If A >T ∅(n−1) is hyperimmune relative to ∅(n−1), then A ≡T
G(n−2) for some weakly n-generic set G.

Proof. Computably in A, we build a sequence (D0, E0) ≥ (D1, E1) ≥ · · · of condi-
tions, beginning with (D0, E0) = (∅, ω). Let C0, C1, . . . be a listing of all Σ0

n sets of
pre-conditions, and fixing a ∅(n−1)-computable enumeration of each Ci, let Ci,s be
the set of all pre-conditions enumerated into Ci by stage pA(s). We may assume that
〈D,E〉 ≤ s for all (D,E) ∈ Ci,s. Let B0, B1, . . . be a uniformly ∅(n−1)-computable
sequence of pairwise disjoint co-immune sets. Say Ci requires attention at stage
s if there exists b ≤ pA(s) in Bi ∩ Es and a condition (D,E) in Ci,s extending
(Ds ∪ {b}, {x ∈ Es : x > b}).

At stage s, assume (Ds, Es) is given. If there is no i ≤ s such that Ci requires
attention at stage s, set (Ds+1, Es+1) = (Ds, Es). Otherwise, fix the least such
i. Choose the least corresponding b and earliest enumerated extension (D,E) in
Ci,s, and let (D∗, E∗) = (D,E). Then obtain (D∗∗, E∗∗) from (D∗, E∗) by forcing
the jump, in the usual manner. Finally, let k be the number of stages t < s such
that (Dt, Et) 6= (Dt+1, Et+1), and let (D∗∗∗, E∗∗∗) = (D∗∗ ∪ {b}, {x ∈ E∗∗ : x >
b}), where b is the least element of BA(k) ∩ E∗∗. If 〈D∗∗∗, E∗∗∗〉 ≤ s + 1, set
(Ds+1, Es+1) = (D∗∗∗, E∗∗∗), and otherwise set (Ds+1, Es+1) = (Ds, Es).

By definition, the Bi must intersect every computable set infinitely often, and so
the entire construction is A-computable. That G =

⋃
sDs is weakly n-generic can

be verified much like in Kurtz’s proof, but using the ∅(n−1)-computable function h
where h(s) is the least t so that for each (D,E) with 〈D,E〉 ≤ s there exists b ≤ t in
Bi∩E and (D∗, E∗) ∈ Ci,t extending (D∪{b}, {x ∈ E : x > b}). That G(n−2) ≤T A
follows by Theorem 5.1 from G′ being forced during the construction and thus being
A-computable. Finally, to show A ≤T G(n−2), let s0 < s1 < · · · be all the stages
s > 0 such that (Ds−1, Es−1) 6= (Ds, Es). The sequence (Ds0 , Es0) > (Ds1 , Es1) · · ·
can be computed by G(n−2) as follows. Given (Dsk , Esk), the least b ∈ G − Dsk

must belong to some Bi, and since G(n−2) computes ∅(n−1) it can tell which Bi.
Then G(n−2) can produce Ci until the first (D∗, E∗) extending (Dsk ∪ {b}, {x ∈
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Esk : x > b}), and then obtain (D∗∗, E∗∗) from (D∗, E∗) by forcing the jump. By
construction, G satisfies (D∗∗, E∗∗) and (Dsk+1

, Esk+1
) = (D∗∗ ∪ {b}, {x ∈ E∗∗ :

x > b}) for the least b ∈ G−Dsk+1
. And this b is in B1 or B0 depending as k is or

is not in B. �

Corollary 5.4. Not every weakly n-generic set is n-generic.

Proof. By the previous proposition, ∅(n) ≡T G(n−2) for some weakly n-generic set
G. By Theorem 5.1, if G were n-generic we would have ∅(n+1) ≡T G(n−1) ≡T
G′ ⊕ ∅(n) ≡T ∅(n), which cannot be. �

In spite of Theorem 5.1, we are still left with the possibility that some Mathias
n-generic set has Cohen 1-generic degree. We now show that this cannot happen.

Theorem 5.5. If G is n-generic then it has GH1 degree, i.e., G′ ≡T (G⊕ ∅′)′.

Proof. A condition (D,E) forces i ∈ (G⊕ ∅′)′ if there is a σ ∈ 2<ω such that that
Φσi (i) ↓ and for all x < |σ|,

σ(x) = 1 =⇒ (D,E) 
 x ∈ G⊕ ∅′;
σ(x) = 0 =⇒ (D,E) 
 x /∈ G⊕ ∅′.

This is thus a Σ0
2 relation, as forcing x ∈ G ⊕ ∅′ and x /∈ G ⊕ ∅′ are Σ0

1 and Π0
1,

respectively. We claim that (D,E) forcing i /∈ (G ⊕ ∅′)′, i.e., ¬(i ∈ (G ⊕ ∅′)′),
is equivalent to (D,E) having no finite extension that forces i ∈ (G ⊕ ∅′)′, and
hence is Π0

2. That forcing implies this fact is clear. In the other direction, suppose
(D,E) does not force i /∈ (G ⊕ ∅′)′, and so has an extension (D∗, E∗) that forces
i /∈ (G ⊕ ∅′)′. Let σ witness this fact, as above. Then if P and N consist of
the x < |σ| such that σ(2x) = 1 and σ(2x) = 0, respectively, σ witnesses that
(D ∪ P, {x ∈ E : x > maxP ∪N}) also forces i ∈ (G⊕ ∅′)′.

We now show that G′ ≥T (G ⊕ ∅′)′. Let Ci be the set of conditions that force
i ∈ (G ⊕ ∅′)′, and Di the set of conditions that force i /∈ (G ⊕ ∅′)′. Then Ci is Σ0

3

and Di is Π0
2, and indices for them as such can be found uniformly from i. Each Ci

must be either met or avoided by G, and as in the proof of Theorem 5.1, G meets Ci
if and only if it does not meet Di. Which of the two is the case can be determined
by G′ since G′ ≥T ∅′′ and Ci and Di are both c.e. in ∅′′. By Proposition 4.4, G′ can
thus determine whether i ∈ (G⊕ ∅′)′, as desired. �

Recall that a degree d is GLn if d(n) = (d ∪ 0′)(n−1), and that no such degree
can be GH1. It was shown by Jockusch and Posner [7, Corollary 7] that every GL2

degree computes a Cohen 1-generic set. Hence, we obtain the following:

Corollary 5.6. Every Mathias n-generic set has GLm degree for all m ≥ 1. Hence,
it is not of Cohen 1-generic degree, but does compute a Cohen 1-generic.

We leave open the following question, which we have so far been unable to answer.
Partial answers are given in the subsequent results.

Question 5.7. Does every Mathias n-generic set compute a Cohen n-generic set?

Theorem 5.8. If G is Mathias n-generic, and A ≤T ∅(n−1) is bi-immune (i.e., A
and A are each co-immune), then G⊕A computes a Cohen n-generic.
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Proof. For every set S = {s0 < s1 < · · · }, define SA = A(s0)A(s1) · · · , which is a
string in 2<ω if S is finite, and a sequence in 2ω otherwise. Now let C0, C1, . . . be a
listing of all Σ0

n subsets of 2<ω, together with fixed ∅(n−1)-computable enumerations.
For each i, let Di be the set of all conditions (D,E) such that the string DA belongs
to Ci. Then Di is a Σ0

n set of conditions, and as such must be met or avoided by G.
If G meets Di then GA, viewed as an element of 2ω, meets Ci. If G avoids Di, we
claim that GA must avoid Ci. Indeed, suppose G avoids Di via (D,E). Since A and
A are co-immune, they intersect E infinitely often, and so if DA had an extension
τ in Ci, we could make a finite extension (D∗, E∗) of (D,E) so that D∗A = τ . This
extension would belong to Di, a contradiction. �

Thus, for example, the join of G with any non-computable A ≤T ∅′ computes a
Cohen n-generic, as every such A is bi-immune ([5], Corollary 5 (iii)).

Proposition 5.9. If G is Mathias n-generic and H is Cohen n-generic then H is
not many-one reducible to G.

Proof. Seeking a contradiction, suppose f is a computable function such that
f(H) ⊆ G and f(H) ⊆ G. The set of conditions (D,E) with E ⊆ ran(f) is Σ0

3-
definable, and must be met by G else G ∩ ran(f) would be finite and H would be
computable. So fix a condition (D,E) in this set satisfied by G. For all a > maxD,
we then have that a ∈ G if and only if a ∈ E and f−1(a) ⊆ H. It follows that
G ≤T H, and hence that G ≡T H, contradicting our observation at the end of
Section 3 that no Mathias n-generic can have Cohen n-generic degree. �

References

[1] Binns, S., Kjos-Hanssen, B., Lerman, M., Solomon, R. On a conjecture of Dobrinen and
Simpson concerning almost everywhere domination. J. Symbolic Logic 71, 119–136 (2006)

[2] Cholak, P. A., Jockusch, Jr., C. G., Slaman, T. A. On the strength of Ramsey’s theorem
for pairs. J. Symbolic Logic 66, 1–55 (2001)

[3] Downey, R. G., Hirschfeldt, D. R. Algorithmic randomness and complexity. Theory and
Applications of Computability. Springer, New York (2010)

[4] Dzhafarov, D. D., Jockusch, Jr., C. G. Ramsey’s theorem and cone avoidance. J. Symbolic
Logic, 557–578, 74 (2009)

[5] Jockusch, Jr., C. G. The degrees of bi-immune sets. Z. Math. Logik Grundlagen Math. 15,
135–140 (1969)

[6] Jockusch, Jr., C. G. Degrees of generic sets. In: Drake, F. R. and Wainer, S. S. (eds.),
Recursion Theory: its Generalisation and Applications. London Math. Soc. Lecture Note
Ser. vol. 45, pp. 110–139. Cambridge University Press, Cambridge (1980)

[7] Jockusch, Jr., C. G., Posner, D. B. Double jumps of minimal degrees. J. Symbolic Logic

43, 715–724 (1978).
[8] Kurtz, S. A. Notions of weak genericity. J. Symbolic Logic 48, 764–770 (1983)

[9] Seetapun, D., Slaman, T. A. On the strength of Ramsey’s theorem. Special Issue: Models
of arithmetic. Notre Dame J. Formal Logic 36, 570–582 (1995)

[10] Soare, R. I. Computability theory and applications. Theory and Applications of Com-
putability. Springer, New York (to appear)

[11] Soare, R. I. Sets with no subset of higher degree. J. Symbolic Logic 34, 53–56 (1969)

[12] Yu, L. Lowness for genericity. Arch. Math. Logic 45, 233–238 (2006)



10 PETER A. CHOLAK, DAMIR D. DZHAFAROV, AND JEFFRY L. HIRST

Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556

U.S.A.

E-mail address: cholak@nd.edu

Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556

U.S.A.
E-mail address: ddzhafar@nd.edu

Department of Mathematical Sciences, Appalachian State University,, Boone, North

Carolina 28608 U.S.A.
E-mail address: jlh@math.appstate.edu


	1. Introduction
	2. Definitions
	3. Basic results
	4. The forcing relation
	5. Degrees of Mathias generics
	References

