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Abstract

We analyze the logical strength of theorems on marriage problems
with a fixed finite number of solutions via the techniques of reverse
mathematics. We show that if a marriage problem has k solutions,
then there is a finite set of boys such that the marriage problem
restricted to this set has exactly k solutions, each of which extend
uniquely to a solution of the original marriage problem. The strength
of this assertion depends on whether or not the marriage problem
has a bounding function. We also answer three questions from our
previous work on marriage problems with unique solutions.

Our aim is to analyze some marriage theorems via the techniques of re-
verse mathematics. The subsystems of second order arithmetic used are
RCA0, which includes comprehension for recursive (or computable) sets of
natural numbers, WKL0, which appends a weak form of König’s Lemma for
trees, and ACA0, which appends comprehension for arithmetically definable
sets. We refer the reader to Simpson [5] for an extensive development of the
program of reverse mathematics.
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We use the standard anthropocentric terminology for marriage theorems.
A marriage problem consists of a set B of boys, a set G of girls, and a relation
R ⊆ B ×G where (b, g) ∈ R means “b knows g.” A solution of the marriage
problem is an injection f : B → G such that for all b ∈ B, (b, f(b)) ∈ R.
Informally, f matches each boy to a girl from among his acquaintances while
avoiding polygamy. In general, marriage theorems provide necessary and
sufficient conditions for solutions to exist. In this paper, we consider marriage
problems with a fixed finite number of solutions. Formally, we say a marriage
problem has k solutions if there is a sequence f1, f2, . . . fk such that each fi
is a solution, fi = fj if and only if i = j and any other function g that is a
solution is equal to fi for some i. Marriage theorems are often expressed using
other terminology such as transversals, systems of disctinct representatives
(SDRs), and matchings in bipartite graphs.

We note that for every marriage problem considered in this paper, each
boy is assumed to know only finitely many girls. Marriage problems in which
boys are allowed to know infinitely many girls are considerably more complex
and not considered here.

As a notational convenience, we use some set theoretic notation as abbre-
viations for more complicated formulas of second order arithmetic. If b ∈ B,
we write G(b) for {g ∈ G | (b, g) ∈ R}. As each boy knows at most finitely
many girls, for any choice of b, RCA0 can prove the existence of G(b). Al-
though G(b) looks like function notation, it is not. We further abuse this
notation by using formulas like g ∈ G(B0) to abbreviate ∃b ∈ B0((b, g) ∈ R).
In settings that address more than one marriage problem, we write GM(B0)
to denote girls known by boys in B0 in the marriage problem M . Cardi-
nality notation like |X| ≤ |Y | abbreviates the assertion that there is an
injection from X into Y . The formula |X| < |Y | abbreviates the conjunction
of |X| ≤ |Y | and |Y | 6≤ |X|. For finite sets, RCA0 can prove many familiar
statements about cardinality, for example, if X is finite and y /∈ X then
|X| < |X ∪ {y}|.

If a marriage problem has finitely many solutions, then the set of boys
on which the solutions differ must be finite. This assertion is equivalent to
WKL0, as shown by our first theorem.

Theorem 1. (RCA0) The following are equivalent:

(1) WKL0.

(2) Suppose M = (B,G,R) is a marriage problem in which each boy knows
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finitely many girls, and M has exactly k solutions, f1, f2, . . . fk. Then
there is a finite set B0 ⊂ B such that for all i < j ≤ k and b ∈ B, if
fi(b) 6= fj(b) then b ∈ B0.

Proof. To prove that (1) implies (2), assume WKL0 and let M = (B,G,R) be
as described in (2). Suppose B0 = {b ∈ B | ∃i∃jfi(b) 6= fj(b)} is unbounded.
Our goal is to show that M has more than k solutions.

For each pair i < j ≤ k, let Rij = {(b, g) | fi(b) = g ∨ fj(b) = g} and
define Mij = (B,G,Rij). Note that fi and fj are solutions of Mij and any
solution of Mij is also a solution of M . Viewing Mij as a bipartite graph
with vertex sets B and G, the connected components of Mij are among the
forms represented in Figure 1. From left to right, we describe these as single
links, finite cycles, and linear paths. The linear path in Figure 1 is finite and
has two endpoints, but Mij could contain infinite linear paths with either one
endpoint or no endpoints. We will consider two cases based on the prevalence
of finite cycles in Mij.

G

B

Figure 1: Typical subgraphs of Mij

For the first case, suppose there is a subset B1 of B0 of size k(k−1)(2k+1)
such that no element lies in any finite cycle of any Mij for any value of i and
j. For any b ∈ B1, we have b ∈ B0, so for some i and j, fi(b) 6= fj(b) and
b lies in a linear path in Mij. There are only k(k − 1) pairs of indices, so
there must be a subset B2 ⊂ B1 of size 2k+ 1 and a fixed pair i0 and j0 such
that ∀b ∈ B2(fi0(b) 6= fj0(b)). We consider two subcases. First, suppose that
there are at least k+1 boys b in B2 such that fi0(b) is not in the range of fj0 .
Then for each such b, the function matching b to fi0(b) and agreeing with fj0
elsewhere is a solution of Mi0j0 , yielding k + 1 distinct solutions of M . For
the second subcase, suppose that there are less than k + 1 boys in B2 such
that fi0(b) is not in the range of fj0 . Recall that |B2| = 2k+1, so there are at
least k+ 1 boys b in B2 such that fi0(b) is in the range of fj0 . Fix any such b
and find b′ such that fj0(b

′) = fi0(b). Näıvely, the function sending b to fj0(b)
and b′ to fi0(b

′) can be extended to a matching of the linear path containing
b, and indeed to to a solution of Mi0j0 that includes every girl in the range
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of fi0 except for fi0(b). More formally, for any finite set B′ of boys including
our fixed b, there is a solution of Mi0j0 restricted to B′ that does not include
fi0(b) but does include each girl in {fi0(t) | t ∈ B′ ∧ t 6= b}. So the tree of
initial segments of solutions of Mi0j0 avoiding (only) fi0(b) is infinite, and by
WKL0 must contain an infinite path encoding a solution of Mi0j0 avoiding
only fi0(b). Because there are k+ 1 possible values we could fix for b, we can
construct k + 1 trees and apply weak König’s lemma for sequences of trees
(provable in WKL0 as in Lemma 5 of Hirst [3]) to find k+1 distinct solutions
of M . This yields a contradiction, completing our discussion of the first case.

For the second case, suppose the first case fails, so that for any collection
of k(k − 1)(2k + 1) boys from B0, at least one must lie in some finite cycle
of some Mij. Using RCA0, we can construct an infinite enumeration of finite
cycles from the various Mij such that no cycle is repeated. (Cycles from
different Mij may overlap.) Among the first k2(k− 1) cycles in this enumer-
ation, k must match indices. Suppose they all lie in Mi0j0 . For any subset
of these cycles, the function that matches fi0 on the cycles in the subset and
matches fj0 everywhere else is a solution of Mi0j0 distinct from the solution
corresponding to any other subset. Thus we have 2k > k distinct solutions
of M , completing our discussion of the second case and our proof that (1)
implies (2).

To prove that (2) implies (1), suppose T is a nontrivial 0 − 1 tree with
no infinite paths. (In Simpson’s [5] terminology, a 0− 1 tree is a binary tree
in which each node is labeled with a 0 or a 1.) We will use (2) to prove
that T is finite. Identify each node in T with the finite sequence of zeros
and ones leading to it, and let ρ = 〈 〉 denote the empty sequence at the
root of the tree. For any sequence σ ∈ T , let σ+ denote the next node in
the pre-order depth first traversal of T . That is, if σ has a successor, then
σ+ = σa0 if σa0 ∈ T and σ+ = σa1 otherwise. If σ has no successor, let
l be the largest number less than the length of σ such that σ(l) = 0 and
τ = 〈σ(0) . . . , σ(l), 1〉 ∈ T , and define σ+ = τ . If σ has no successor and no
such l exists (so σ is the rightmost leaf of T ) let σ+ = ρ. RCA0 can prove
that ∀σ(σ 6= σ+) and ∀σ∀τ(σ 6= τ → σ+ 6= τ+). Also, because T has no
infinite paths, the function σ → σ+ is onto. To see this, suppose τ is not
equal to σ+ for any choice of σ. Then the rightmost path through T lying
to the left of τ exists by recursive comprehension and must be infinite.

Now we can define the marriage problem associated with T . Let M =
(B,G,R) where B = {bσ | σ ∈ T}, G = {gσ | σ ∈ T}, and R = {(bσ, gσ) |
σ ∈ T} ∪ {(bσ, gσ+) | σ ∈ T}. Every boy knows exactly two girls. The
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functions f0 and f1 defined by f0(bσ) = gσ and f1(bσ) = gσ+ are solutions of
M , differing at every element of B. We claim that M has no other solutions.
Let f be a solution that differs from f0. Then for some σ, f(bσ) = gσ+. We
will show that f must be f1 in two steps.

For the first step, we will show that if f(bσ) = gσ+ then f(bτ ) = gτ+ for all
extensions τ of σ. By way of contradiction, suppose this is not the case. Let
τ be the shortest extension of σ such that f(bτ ) = gτ . Write τ = σ0

ai where
σ0 ⊃ σ and i ∈ {0, 1}. Because τ is shortest, f(σ0) = σ0+ and because f is
injective, σ0+ 6= τ . Thus, σ0+ = σ0

a0 and τ = σ0
a1. Recall that f(σ0) =

σ0+ = σ0
a0, so f(σ0

a0) = σ0
a0+, and that τ = σ0

a1, so f(σ0
a1) = σ0

a1.
Thus, we have found an extension σ0 of σ such that f(σ0

a0) = σ0
a0+ and

f(σ0
a1) = σ0

a1. If every extension of σ with this property has a proper
extension with this property, then we can construct an infinite path through
T . The tree T has no infinite paths, so there is an extension σ1 of σ such that
f(σ1

a0) = σ1
a0+, f(σ1

a1) = σ1
a1, and f(σ1

a0aµ) = σ1
a0aµ+ for every

σ1
a0aµ ∈ T . Because T has no infinite paths, we can find the rightmost leaf

in T extending σ1
a0; call it σ1

a0aµ0 and note that σ1
a0aµ0+ = σ1

a1. We
have f(σ1

a0aµ0) = σ1
a0aµ0+ = σ1

a1 and f(σ1
a1) = σ1

a1, contradicting
the claim that f is injective. This contradiction completes the first step, and
shows that if f(bσ) = gσ+ then f(bτ ) = gτ+ for all extensions τ of σ.

For the second step, we will show that if f(bσ) = gσ+ for some σ, then
f(bρ) = gρ+. To see this, suppose f(bσ) = gσ+ for some σ. We may choose σ
so that it is the shortest sequence with this property and the rightmost node
of T at this level with this property. (We will eventually see that σ = ρ.)
Using the fact that T has no infinite paths, let τ be the leaf of the rightmost
path of T extending σ. By the preceding paragraph, f(bτ ) = gτ+. Because
f is injective, f(bτ+) 6= gτ+. By the definition of successor (+) and the fact
that τ is a rightmost leaf, the length of τ+ must be less than or equal to
the length of σ. By minimality it cannot be less, so it must be equal, and
because σ is rightmost, τ+ = σ. Thus σ = τ+ is a proper initial segment
of τ . By the definition of the successor operation, this only happens when
σ = ρ = 〈 〉. Thus f(bρ) = gρ+, as desired.

Combining the two steps, if f(bσ) = gσ+ for any σ ∈ T , then f(bρ) = gρ+
and f(bτ ) = gτ+ for every τ extending ρ. So if f agrees with f1 on one boy,
then f is f1. If f does not agree with f1 on any boy, then it agrees with
f0 on every boy. Thus, M is a marriage problem with exactly two solutions
and those solutions differ on every boy. Applying (2), the set of boys must
be finite. Thus, the set of nodes in T is finite, completing the proof of the
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reversal and the theorem.

Suppose that M = (B,G,R) is a marriage problem in which B and G
are subsets of N. We say that M is bounded if there is a function h : B → G
such that for each b ∈ B, G(b) ⊆ {0, 1, . . . , h(b)}. The function h acts as
a uniform bound on the girls that each boy knows, and also insures that
each boy knows only finitely many girls. Given such a bounding function,
recursive comprehension proves the existence of the function mapping each b
to (the code for) the finite set G(b). The next theorem is a stronger version
of Lemma 3 of Hirst and Hughes [4]. Although it considers only marriage
problems with unique solutions, is useful in the proofs of later results on
problems with finite numbers of solutions.

Theorem 2. (RCA0) The following are equivalent:

(1) WKL0.

(2) Suppose M = (B,G,R) is a bounded marriage problem with a unique
solution. Then there is an enumeration of the boys 〈bi〉i≥1 such that for
every n ≥ 1, we have |G(b1, . . . bn)| = n.

(3) Suppose M = (B,G,R) is a bounded marriage problem with a unique
solution. Then for any finite B0 ⊂ B, there is a finite set F such that
B0 ⊂ F ⊂ B and |G(F )| = |F |.

Proof. Theorem 6 of Hirst and Hughes [4] shows that (1) is equivalent to (2).
To see that (2) implies (3), suppose M = (B,G,R) is a bounded marriage
problem with a unique solution, and B0 is a finite subset of B. Apply (2)
to obtain and enumeration 〈bi〉i≥1 of B such that |G(b1, . . . bn)| = n for all
n ≥ 1. The set B0 is finite, so by the Σ0

0 bounding principle (which is a
consequence of Σ0

1 induction), there is a t ∈ N such that B0 ⊂ {b1, . . . bt}.
Let F = {b1, . . . bt}. Then B0 ⊂ F and |G(F )| = t = |F |.

To complete the proof we will deduce WKL0 from the special case of (3)
for |B0| = 1. Let T be a 0 − 1 tree with no infinite paths. We will prove
that T is finite. Using the sequence notation from the reversal of Theorem 1,
construct the marriage problem M = (B,G,R) by letting B = {bσ | σ ∈ T},
G = {gσ | σ ∈ T}, and

R = {(bσ, gσ) | σ ∈ T} ∪ {(bσ, gσai) | σ ∈ T ∧ σai ∈ T}
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where i ∈ {0, 1}. The tree is binary, so B is a bounded marriage problem.
Define f : B → G by f(bσ) = gσ. Clearly f is a solution of M ; we claim that
it is the only solution. To see this, suppose f2 is a solution distinct from f .
Then f2(bσ) = gσaj for some σ and some j ∈ {0, 1}. Fix such a σ and define
σ0 = σ. Given σn, let σn+1 = τ where f2(bσn) = gτ . Because f is injective,
an induction argument shows that σn+1 must always be a proper extension
of σn. Hence 〈σn | n ∈ N〉 is the tail of an infinite path through T , yielding
a contradiction. Thus f is the unique solution of M .

Using ρ to denote the empty sequence at the root of T , apply (3) to find
a finite |F | such that {bρ} ⊂ F and |G(F )| = |F |. The unique solution f
restricted to F is a solution of the restricted problem (F,G,R) and because
|G(F )| = |F |, it must be a bijection between F and G(F ). Consequently, if
gσ ∈ G(F ) then bσ ∈ F . Thus, if bσ ∈ F and σai ∈ T , then gσai ∈ G(F ),
and so bσai ∈ F . So F = B and T is finite.

Item (3) of the preceding theorem is a generalization of Lemma 3 of Hirst
and Hughes [4]. The proof that (3) implies (1) shows that Lemma 3 of [4] is
equivalent to WKL0, answering the question in that paper about the exact
strength of the lemma.

The next theorem can be viewed as an analysis of characterization the-
orems for bounded marriage problems with finitely many solutions. Item
(2) states that if a bounded marriage problem has finitely many solutions,
then there must be a set F with the three given properties. This implication
is equivalent to WKL0. RCA0 suffices to prove the converse, that is if such
an F exists, then the marriage theorem must have finitely many solutions.
Similarly, WKL0 is equivalent to the implication in item (3), and its con-
verse is provable in RCA0. Thus, item (2) and item (3) could be stated as
biconditionals without changing the strength of the theorem.

Theorem 3. (RCA0) The following are equivalent:

(1) WKL0.

(2) Suppose M = (B,G,R) is a bounded marriage problem with k solutions
f1, f2, . . . fk. Then there is a finite set F satisfying the following three
properties:

(P1) The solutions of (F,G,R) are precisely the restrictions of the so-
lutions f1, f2, . . . fk to F .
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(P2) For all i < j ≤ k and b ∈ B, if fi(b) 6= fj(b) then b ∈ F .

(P3) Let G0 = {g | ∀i ≤ k ∃b ∈ F fi(b) = g}. Then there is an enumer-
ation 〈bi〉i≥1 of B−F such that for all n, |G(b1, . . . bn)−G0| = n.

(3) Suppose M = (B,G,R) is a a bounded marriage problem with k so-
lutions f1, f2, . . . fk. Then there is a finite set F ⊂ B such that M
restricted to F has exactly k solutions, each of which extends uniquely
to a solution of M .

Proof. To see that (1) implies (2), assume WKL0 and let M = (B,G,R) be
a bounded marriage problem with k solutions f1, f2, . . . fk. Our goal is to
construct the finite set F . Begin by applying Theorem 1 to find B0 ⊂ B
such that for all i < j ≤ k and b ∈ B, if fi(b) 6= fj(b) then b ∈ B0. Because
M is bounded, the set G(B0) exists by recursive comprehension. Consider
the finite marriage problem M0 = (B0, G(B0), R). List all the solutions of
M0, beginning with the restrictions of f1, f2, . . . fk to B0, so the entire list
is f1, f2, . . . fk, fk+1, . . . fn. For each j with k + 1 ≤ j ≤ n, the marriage
problem (B−B0, G−{fj(b) | b ∈ B0}, R) has no solution, so by Theorem 2.3
of Hirst [2], there is a finite set Bj ⊂ B−B0 such that |G(Bj)− {fj(b) | b ∈
B0}| < |Bj|. Thus, fj cannot be extended to a solution of any restriction
of M that includes B0 ∪ Bj among the boys. Because we know that for
each j (a code for) such a finite Bj exists, recursive comprehension suffices
to prove the existence of a sequence of finite sets {Bj | k + 1 ≤ j ≤ n}
blocking extensions of fk+1, . . . fn. Let B1 = ∪{Bj | k + 1 ≤ j ≤ n} and
note that every solution of (B0 ∪ B1, G(B0 ∪ B1), R) must match one of the
solutions f1 through fk on the set B0. Let G0 = ∩i≤k{fi(b) | b ∈ B0} and
consider the marriage problem M1 = (B−B0, G−G0, R). For 1 ≤ i ≤ k, fi
restricted to B−B0 is a solution of M1. Because f1 through fk agree outside
B0, these constitute a single solution of M1. We claim this is the unique
solution. By way of contradiction, suppose f is a solution of M1 that differs
from f1 for some some fixed b0 ∈ B−B0. If there is an i ≤ k such that
f(b0) /∈ {fi(b) | b ∈ B0}, then the function f ′ defined by f ′(b) = fi(b) if
b ∈ B0 and f ′(b) = f(b) for b ∈ B−B0 is a solution of M differing from
f1 on a boy in B−B0, contradicting the construction of B0. Thus f(b0) ∈
∩i≤k{fi(b) | b ∈ B0} = G0, contradicting the claim that f maps B−B0

into G−G0. Summarizing, M1 = (B−B0, G−G0, F ) is a bounded marriage
problem with a unique solution. Using the fact that B1 ⊂ B−B0, we can
apply Theorem 2 to find a finite set F1 such that B1 ⊂ F1 ⊂ B−B0 and

8



|GM1(F1)| = |F1|. Let F = B0 ∪ F1.
We claim that F has the three properties listed in (2). Let f be any

solution of (F,G(F ), R), the restriction of M to the boys in F . Then f is a
solution of (B0∪B1, G(B0∪B1), R) and so must match one of f1 through fk on
B0. Fix 1 ≤ i0 ≤ k such that f matches fi0 on B0. Because fi0(B0) ⊃ G0, f
must map F1 = F−B0 into G−G0 = GM1(F1). Recall that |GM1(F1)| = |F1|,
so f must be a bijection on F1 with precisely the same range on F1 as fi0 . If
f differs from fi0 , then the function that matches f on F and fi0 on B−F
is a solution of M differing from f1, f2, . . . fk. Thus f is the restriction of fi0
to F and (P1) holds. Recall that B0 ⊂ F and B0 includes all b such that
fi(b) 6= fj(b) for i < j ≤ k. Thus (P2) holds. Finally, for G0 = {g | ∀i ≤
k ∃b ∈ F fi(b) = g}, consider the marriage problem M2 = (B−F,G−G0, R).
Any solution of M2 can be extended to a solution of M1 = (B−B0, G−G0, R),
so M2 has a unique solution. By Theorem 6 of Hirst and Hughes [4], there
is an enumeration 〈bi〉i≥1 of B−F such that for all n, |G(b1, . . . bn)−G0| = n,
satisfying property (P3) and completing the proof of (2) from WKL0.

Clearly, any F satisfying (2) also satisfies (3), so we need only show
that (3) implies (1). This can be done with the following modification of
the reversal from Theorem 2. Given a 0 − 1 tree T with no infinite paths,
construct the marriage problem M = (B,G,R) by letting B = {bσ | σ ∈ T},
G = {gσ | σ ∈ T} ∪ {g}, and

R = {(bσ, gσ) | σ ∈ T} ∪ {(bσ, gσai) | σ ∈ T ∧ σai ∈ T} ∪ {(bρ, g)}

where i ∈ {0, 1}. The tree is binary, so B is a bounded marriage problem.
Define f1 : B → G by f1(bσ) = gσ for all σ, and f2 : B → G by f2(bρ) = g
and f2(bσ) = gσ for all σ other than ρ. Then f1 and f2 are solutions of M ,
and as in the proof of Theorem 2, the existence of a third solution implies
the existence of an infinite path. Apply (3) to find F such that M restricted
to F has exactly two solutions, each of which extends uniquely to a solution
of M . Then F must contain bρ and, as in the proof of Theorem 2, be closed
under sequence extensions. Consequently, T has finitely many nodes.

We can extend the preceding results to marriage problems without bound-
ing functions, but the resulting statements are stronger. The next theorem
is the version of Theorem 2 for this broader class of problems.

Theorem 4. (RCA0) The following are equivalent:

(1) ACA0.
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(2) Suppose M = (B,G,R) is a marriage problem, each boy knows finitely
many girls, and M has a unique solution. Then there is an enumeration
of the boys 〈bi〉i≥1 such that for every n ≥ 1, we have |G(b1, . . . bn)| = n.

(3) Suppose M = (B,G,R) is a marriage problem, each boy knows finitely
many girls, and M has a unique solution. Then for any finite B0 ⊂ B,
there is a finite set F such that B0 ⊂ F ⊂ B and |G(F )| = |F |.

Proof. Theorem 4 of Hirst and Hughes [4] shows that (1) is equivalent to
(2). To see that (2) implies (3), assume (2) and note that we may use ACA0.
Given any marriage problem as in (3), and viewing B and G as subsets of
N, the bounding function given by h(b) = µt(∀n((b, g) ∈ R → g < t)) is
arithmetically definable. ACA0 implies WKL0, so by Theorem 2, (3) follows.
To prove that (3) implies (1), imitate the reversal from Theorem 2, letting
T be a tree with no infinite paths in which each node has finitely many
successors. The resulting marriage problem satisfies the hypothesis of (3),
and an application of (3) shows that T is finite. This yields a proof of full
König’s Lemma, which is equivalent to ACA0, as noted by Friedman [1] and
presented in detail as Theorem III.7.2 of Simpson [5].

The preceding reversal holds in the special case where B0 is a singleton,
showing that Lemma 2 of Hirst and Hughes [4] is equivalent to ACA0, and
answering the question posed in that article about the exact strength of
Lemma 2. Next, we present the version of Theorem 3 for marriage problems
without bounding functions.

Theorem 5. (RCA0) The following are equivalent:

(1) ACA0.

(2) Suppose M = (B,G,R) is a marriage problem, each boy knows finitely
many girls, and f1, f2, . . . fk are the k solutions of M . Then there is a
finite set F satisfying the following three properties:

(P1) The solutions of (F,G,R) are precisely the restrictions of the so-
lutions f1, f2, . . . fk to F .

(P2) For all i < j ≤ k and b ∈ B, if fi(b) 6= fj(b) then b ∈ F .

(P3) Let G0 = {g | ∀i ≤ k ∃b ∈ F fi(b) = g}. Then there is an enumer-
ation 〈bi〉i≥1 of B−F such that for all n, |G(b1, . . . bn)−G0| = n.

10



(3) Suppose M = (B,G,R) is a marriage problem, each boy knows finitely
many girls, and f1, f2, . . . fk are the k solutions of M . Then there is a
finite set F ⊂ B such that M restricted to F has exactly k solutions,
each of which extends uniquely to a solution of M .

Proof. To see that (1) implies (2), assume ACA0. Given a marriage problem
as in (2), ACA0 proves the existence of a bounding function. Apply (2)
from Theorem 3 to complete the proof. As in the proof of Theorem 3, (2)
immediately implies (3). For the reversal, let T be a finitely splitting tree with
no infinite paths and imitate the construction from the reversal of Theorem
3. Apply (3) to show that T is finite, proving full König’s Lemma.

We close by answering one more question from our earlier article. Lemma
1 of Hirst and Hughes [4] shows that RCA0 can prove that any finite marriage
problem with a unique solution must contain some boy who knows exactly
one girl. Theorem 7 of that article proves the infinite version of this statement
in WKL0, leaving open the question of whether WKL0 is actually necessary.
Our final theorem shows that RCA0 suffices, so WKL0 is not needed.

Theorem 6. (RCA0) Suppose M = 〈B,G,R〉 is a marriage problem in which
each boy knows only finitely many girls and M has a unique solution. Then
some boy knows exactly one girl.

Proof. Suppose M = 〈B,G,R〉 is a marriage problem with a unique solution,
f . Suppose by way of contradiction that every boy knows at least two girls.
Define a function h0 : B → G by letting h0(b) be the first girl other than f(b)
that b knows. Formally, h0(b) = µg((b, g) ∈ R∧f(b) 6= g). Define h1 : B → G
by h1(b) = max{h0(b), f(b)} and let R′ = {(b, g) | f(b) = g ∨ h0(b) = g}.
Recursive comprehension proves the existence of h0, h1, and R′. The society
M ′ = (B,G,R′) is bounded by h1 and has f as a solution. Every boy in M ′

knows exactly two girls. If there is a finite set F ⊂ B such that |G(F )| = |F |,
then by Lemma 1 of Hirst and Hughes [4], the marriage problem (F,G(F ), R)
has at least two distinct solutions. Call them g1 and g2. The functions

fi(b) =

{
gi(b) if b ∈ F
f(b) if b 6∈ F

are distinct solutions of M , contradicting the uniqueness of f . Thus for every
finite F ⊂ B, |G(F )| > |F |.
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For each finite set F , let µF = |G(F )|− |F |. The problem M is bounded,
so µF is computable in RCA0. By Σ1

0 least element principle (a consequence
of Σ1

0 induction) there is a smallest n such that there is a finite set F with
µF = n. Denote this n by µ0. By Σ1

0 least element principle there is a
smallest k such that ∃F (|F | = k ∧ µF = µ0). (The existential quantifier
ranges over integer codes for finite sets so this formula is Σ1

0.) Denote this
value by k0 and choose a witness F0 such that |F0| = k0 and µF0 = k0. Thus
|G(F0)| = k0 + µ0 > k0. The unique solution f maps F0 injectively into
G(F0). Because |G(F0)| = |F0|+ µ0, there are exactly µ0 girls in G(F0) that
are not in the range of f restricted to F0. Because f is unique, every girl
in G(F0) is in the range of f (as a function of B), so there are µ0 boys not
in F0 that are mapped by f into G(F0). Let F1 denote these boys. Thus
f is a bijection between F0 ∪ F1 and G(F0). We may view the inverse of
f as a solution to the marriage problem M ′ = (G(F0), F0 ∪ F1, R

−1) where
R−1 ⊆ G(F0) × (F0 ∪ F1) such that (g, b) ∈ R−1 if and only if (b, g) ∈ R,
b ∈ F0 ∪ F1 and g ∈ G(F0).

We claim that every girl in G(F0) knows at least two boys in F0 ∪ F1.
Consider two cases. First, suppose g ∈ f(F1). Then there is a boy b1 ∈ F1

that knows g and, because g ∈ G(F0), there is a boy b0 ∈ F0 that knows g. F0

and F1 are disjoint, so g knows at least two boys. Second, suppose g ∈ f(F0).
By way of contradiction, suppose g knows exactly one boy, b0 ∈ F0. Then
|G(F0−{b0})| ≤ |G(F0)| − 1. We know |F0| = k0 and |G(F0)| = k0 + µ0

so |G(F0−{b0})| ≤ (k0 − 1) + µ0. By the minimality of k0, we know that
µF−{b0} > µ0. Thus |G(F0−{b0})| = (k0 − 1) + µF−{b0} > (k0 − 1) + µ0,
yielding the desired contradiction. Summarizing, because every girl in G(F0)
is either in f(F1) or in f(F0), every girl in G(F0) knows at least two boys in
F0 ∪ F1.

Every girl in the problem M ′ = (G(F0), F0 ∪ F1, R
−1) knows at least two

boys, so by Lemma 1 of [4], M ′ must have at least two distinct solutions.
Because these are distinct bijections between G(F0) and F0 ∪ F1, we may
invert them to obtain distinct bijections between F0 ∪ F1 and G(F0). Call
these maps f1 and f2. Because f(F0 ∪ F1) = G(F0), we can patch f1 and f2
into f , defining

gi(b) =

{
fi(b) if b ∈ F0 ∪ F1

f(b) if b 6∈ F0 ∪ F1

for i ∈ {1, 2}. Then g1 and g2 are distinct solutions of M , contradicting the
assumption that f is unique, and completing the proof.
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