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Abstract We show that a statement HIL, which is motivated by a lemma
of Hilbert and close in formulation to Hindman’s theorem, is actually much
weaker than Hindman’s theorem. In particular, HIL is finitistically reducible
in the sense of Hilbert’s program, while Hindman’s theorem is not.
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Brown, Erdés, Chung, and Graham [2] point out that a finitary lemma of
Hilbert [3] can be viewed as a version of Folkman’s theorem with a relaxed
condition on the monochromatic set. By analogy, in the infinite setting there
is a remarkable similarity between a certain version of Hindman’s theorem and
the following statement, which the author heard about from Henry Towsner

[10].

HIL: Suppose f : NN — k is a finite coloring of the finite subsets of the
natural numbers. Then there is a an infinite sequence (X;);en of distinct
finite sets and a color ¢ < k such that for every finite set F' C N we have

f(UierX;) = c.

Note that the finite union form of Hindman’s theorem, denoted by HTU by
Blass, Hirst, and Simpson [1], differs from HIL only in requiring that the
sequence of sets is pairwise disjoint rather than merely distinct. This small
change in wording has disproportionate impact on the strength of the theo-
rem and the complexity of its proof.
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We use the techniques of reverse mathematics to compare the strengths of
the two theorems. Any axiom systems used below are described in detail in
Simpson’s book [8]. Blass, Hirst, and Simpson [1] show that over RCAq, Hind-
man’s theorem implies ACAg. Technically, their version of Hindman’s theorem
requires that max(X;) < min(X;4+1) for each 4, but that version is equivalent
to the pairwise disjoint version over RCAj. By contrast, HIL is equivalent to
the much weaker infinite pigeonhole principle, often denoted by RT(1).

Theorem 1 (RCAg) The following are equivalent:

1. HIL.
2. RT(1): If f : N — k then there is a ¢ < k such that {n | f(n) = c} is
infinite.

Proof We work throughout in RCAg. To show that HIL implies RT(1), assume
HIL and let f : N — k be a finite coloring of N. By A} comprehension, there
is a coloring g : N<N — k defined by g(X) = f(max(X)). Apply HIL to g, and
thin the resulting sequence so that ¢ < j implies max(X;) < max(X;). Then
for every x € {max(X;) | i € N} we have f(z) = g(Xo).

To prove the converse, assume RT(1) and let f : N<N — k be a finite
coloring of N<N. Let [0, n] denote the set {0, 1,2,...,n}. By AY comprehension,
there is a coloring g : N — k defined by g(n) = f([0,n]). Apply RT(1) to g
to find an infinite sequence ng < n; < ng < ... and a color ¢ < k such that
g(n;) = c for all 4. The intervals in the sequence [0, no], [0, n1], ... are distinct,
and for each ¢ we have f(]0,n;]) = c. Since for every finite set F, the union
User[0, 4] is equal to the interval [0, nyax )], the sequence witnesses that HIL
holds.

From a naive comparison of the preceding argument to any proof of Hind-
man’s theorem, Hindman’s theorem is much more difficult to prove than HIL.
From a computability theoretic viewpoint, the previous theorem shows that
HIL is computably true, but Hindman’s theorem is known to imply the ex-
istence of the jump [1]. The reverse mathematical analysis also allows us to
distinguish between the results through the lens of finitistic reductionism.

Based on work of Tait [9], Simpson [7] argues that Hilbert’s program can
be partially realized by determining that portion of mathematics which is
finitistically reducible, that is, provable in axiom systems that are conservative
over PRA (primitive recursive arithmetic) for ITY formulas. The following well-
known result implies that RCAy 4+ HIL satisfies this criterion.

Theorem 2 WKLy +RT(1) (and hence RCAg+HIL) is conservative over PRA
for I formulas.

Proof The proof for WKLy + RT(1) is a minor modification of a proof of Fried-
man’s conservation result for WKLg, presented as Theorem 1X.3.16 by Simpson
[8]. Based on Harrington’s primitive recursive indicator for regular initial seg-
ments of nonstandard models of fragments of arithmetic, Paris [5] notes that
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the semi-regular initial segments are symbiotic with the regular initial seg-
ments. This means that given any semi-regular cut I selected as in Simpson’s
Lemma IX.3.13 with b € I < ¢, there is a regular cut J with b € J < c. Substi-
tuting J in the proof of Theorem IX.3.16 yields a model of WKLo+ BXY, which
is equivalent to WKLy + RT(1) by a result of Hirst [4]. Since WKL includes
RCAg, by Theorem 1 the result for RCAy + HIL follows.

While HIL is finitistically reducible in the sense of Hilbert’s program, Hind-
man’s theorem is not. As a consequence of Proposition 1.6 and Proposition
3.1 of Sieg [6], ACA, proves the consistency of PRA. This statement can be
formalized as a IT{ statement and, by Gédel’s second incompleteness theorem,
is not provable in PRA. Since Hindman’s theorem implies ACAq [1], Hind-
man’s theorem is not conservative over primitive recursive arithmetic for I7?
formulas, and so is not finitistically reducible. Summarizing, HIL is amenable
to Hilbert’s program, but Hindman’s theorem exceeds the bounds of finitistic
reductionism.
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