
The Journal of Symbolic Logic

Volume 00, Number 0, XXX 0000

HINDMAN’S THEOREM, ULTRAFILTERS, AND REVERSE
MATHEMATICS (TO APPEAR IN JSL)

JEFFRY L. HIRST
APPALACHIAN STATE UNIVERSITY

Abstract. Assuming CH, Hindman [2] showed that the existence of certain ultrafilters

on the power set of the natural numbers is equivalent to Hindman’s Theorem. Adapting

this work to a countable setting formalized in RCA0, this article proves the equivalence of

the existence of certain ultrafilters on countable Boolean algebras and an iterated form

of Hindman’s Theorem, which is closely related to Milliken’s Theorem. A computable

restriction of Hindman’s Theorem follows as a corollary.

Throughout this paper, proofs are carried out in the formal system RCA0. For
a full exposition of RCA0 and reverse mathematics, Simpson’s book [6] is the best
source. For the following discussion, the salient features of RCA0 are that it is a
subsystem of second order arithmetic with induction restricted to Σ0

1 formulas
and comprehension restricted to relatively computable sets.

The language of second order arithmetic is remarkably expressive, and the
following concepts are easily formalized. A countable field of sets is a countable
sequence of subsets of N which is closed under intersection, union, and relative
complementation. We use Xc to denote {x ∈ N | x /∈ X}, the complement of
X relative to N. Given a set X ⊆ N and an integer n ∈ N, we use X − n to
denote the set {x− n | x ∈ X ∧ x ≥ n}, the translation of X by n. A downward
translation algebra is a countable field of sets which is closed under translation.

Given a countable collection {Gi | i ∈ N} of subsets of N, RCA0 suffices to
prove the existence of the downward translation algebra generated by {Gi | i ∈
N}, which is denoted by 〈{Gi | i ∈ N}〉 and consists of all finite unions of
finite intersections of translations of elements and complements of elements of
{Gi | i ∈ N}. RCA0 can also prove that 〈{Gi | i ∈ N}〉 is a downward translation
algebra.

Note that in RCA0, we encode 〈{Gi | i ∈ N}〉 as a countable sequence of
countable sets, and that each set in 〈{Gi | i ∈ N}〉may be repeated many times in
the sequence. By allowing this repetition, we can organize the encoding sequence
so that given the indices of any elements of the algebra we may deterministically
compute indices for their unions, intersections, complements, and translations.
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Suppose that F = {Xi | i ∈ N} is a countable field of sets. In RCA0, we define
an ultrafilter on F as a set U ⊆ N satisfying the following four properties:
• If Xi = ∅ then i /∈ U .
• If i, j ∈ U and Xk = Xi ∩Xj , then k ∈ U .
• If i ∈ U and Xj ⊇ Xi, then j ∈ U .
• If Xj = Xc

i , then i ∈ U or j ∈ U .
Where no confusion will arise, we will abuse notation by writing U for {Xi | i ∈
U}, so that we may write statements using the standard notation for ultrafilters.
For example, consider the following definition and lemma. An ultrafilter U is
an almost downward translation invariant ultrafilter if ∀X ∈ U ∃x ∈ X (x 6=
0∧X−x ∈ U). While the definition only requires one translating x for each set,
the existence of many is shown by the following lemma.

Lemma 1. (RCA0) If U is an almost downward translation invariant ultrafilter
and X is an element of U , then the set {x ∈ X | X − x ∈ U} is unbounded.

Proof. Suppose by way of contradiction that x is the largest number in X
such that X − x ∈ U . Since X − x ∈ U , there is a y ∈ X − x such that y 6= 0
and (X − x) − y ∈ U . Since y ∈ X − x, we have x + y ∈ X. Additionally,
(X−x)−y = X− (x+y), so we have x+y ∈ X, x+y > x, and X− (x+y) ∈ U ,
contradicting our choice of x. a

If X ⊆ N, then the notation FS(X) denotes the set of all nonrepeating sums
of nonempty finite subsets of X. For example, FS({1, 2, 5}) = {1, 2, 3, 5, 6, 7, 8}.
Using this notation, it is easy to state Hindman’s Theorem.

Theorem 2 (Hindman’s Theorem). If f : N → k is a function mapping N
into the natural numbers less than k, then there is an infinite set X ⊆ N such
that f is constant on FS(X).

Proof. The original non-formalized proof appears in [3]. For a proof of Hind-
man’s theorem in the subsystem ACA+

0 , see [1]. a
The set X in the statement of Theorem 2 is called an infinite homogeneous set

for the partition. Given any set G ⊆ N, we refer to the statement of Theorem 2
with f(x) as the characteristic function for G as Hindman’s Theorem for G.

1. Equivalence results. We begin with the central result of the section,
linking an iterated form of Hindman’s Theorem to the existence of almost down-
ward translation invariant ultrafilters.

Theorem 3. (RCA0) The following are equivalent:
(1) IHT (Iterated Hindman’s Theorem) If {Gi | i ∈ N} is a collection of subsets

of N, then there is an increasing sequence 〈xi〉i∈N ⊆ N such that for every
j ∈ N, {xi | i > j} satisfies Hindman’s Theorem for Gj.

(2) Every countable downward translation algebra has an almost downward
translation invariant ultrafilter.

Proof. To prove that (2) implies (1), suppose {Gi | i ∈ N} is a collection
of subsets and let U be an almost downward translation invariant ultrafilter on
〈{Gi | i ∈ N}〉, the downward translation algebra generated by {Gi | i ∈ N}.
Define a sequence of (indices for) nested sets 〈Xi〉i∈N and an increasing sequence



HINDMAN’S THEOREM, ULTRAFILTERS, AND REVERSE MATHEMATICS (TO APPEAR IN JSL) 3

of integers 〈xi〉i∈N as follows. Let X0 be whichever of G0 and Gc0 is in U . Let
x0 = 0. Suppose that xn has been chosen and that Xn has been chosen so that
Xn ∈ U and either Xn ⊆ Gn or Xn ⊆ Gcn. Since U is an almost downward
translation invariant ultrafilter, by Lemma 1 we can find a least xn+1 ∈ Xn such
that xn+1 > xn and Xn − xn+1 ∈ U . Let Ĝn+1 denote whichever of Gn+1 and
Gcn+1 is in U , and define Xn+1 by Xn+1 = Xn ∩ (Xn − xn+1) ∩ Ĝn+1.

We will show that FS(〈xn〉n>t) ⊆ Xt. Let xi1 , . . . , xik be a finite sequence
of elements of 〈xn〉n>t. Note that ik > 0, so Xik−1 exists, and xik ∈ Xik−1.
Treating this as the base case in an induction, we have

∑k
m=k xim ∈ Xik−1. For

the induction step, suppose that
∑k
m=j+1 xim ∈ Xij+1−1. Since ij ≤ ij+1 − 1,∑k

m=j+1 xim ∈ Xij . Since ij ≥ 1, by the definition of Xn, Xij ⊆ Xij−1 ∩
(Xij−1−xij )∩ Ĝij , so

∑k
m=j+1 xim ∈ Xij−1−xij . That is,

∑k
m=j xim ∈ Xij−1,

completing the induction step. By induction on quantifier-free formulas, we have
shown that

∑k
m=1 xim ∈ Xi1−1. Since t < i1, we have t ≤ i1 − 1, so Xi1−1 ⊆ Xt

and
∑k
m=1 xim ∈ Xt. Since xi1 , . . . , xik was an arbitrary non-repeating sequence

of elements of 〈xn〉n>t, this suffices to show that FS(〈xn〉n>t) ⊆ Xt.
To complete the argument, note that for each t, Xt ⊆ Gt or Xt ⊆ Gct . Thus

for each t, FS(〈xn〉n>t) ⊆ Gt or FS(〈xn〉n>t) ⊆ Gct , so the sequence 〈xn〉n>0

satisfies the iterated version of Hindman’s Theorem presented in (1).
To prove that (1) implies (2), suppose that {Gi | i ∈ N} is a countable down-

ward translation algebra. Since {Gi | i ∈ N} is a countable collection of subsets,
we may apply (1) to find an increasing sequence of integers 〈xi〉i∈N such that
for all j, FS(〈xi〉i>j) ⊆ G∗j , where either G∗j = Gj or G∗j = Gcj . We will show
that U = {G∗i | i ∈ N} is an almost downward translation invariant ultrafilter
on {Gi | i ∈ N}.

If X ∈ {Gi | i ∈ N}, then for some j, G∗j = X or G∗j = Xc, so either
X ∈ U or Xc ∈ U . For each j, G∗j ⊇ FS(〈xi〉i>j) 6= ∅, so ∅ /∈ U . Suppose
X1, X2 ∈ U . Then for some k, j ∈ N, X1 = G∗k and X2 = G∗j . Also, for
some m, G∗m = X1 ∩ X2 or G∗m = (X1 ∩ X2)c. Let t = max{j, k,m}. then
FS(〈xi〉i>t) ⊆ G∗m ∩ G∗k ∩ G∗j = G∗m ∩ X1 ∩ X2. Since G∗m ∩ X1 ∩ X2 6= ∅,
G∗m = X1 ∩ X2. Thus, if X1, X2 ∈ U then X1 ∩ X2 ∈ U . Finally, if X ∈ U
and Y is an element of the downward translation algebra satisfying X ⊆ Y ,
then for some j and k, X = G∗j and Y = Gk. Let t = max{j, k} and note that
X ∩ G∗k ⊇ FS(〈xi〉i>t) 6= ∅, so G∗k = Y and Y ∈ U . Thus U is an ultrafilter on
the downward translation algebra.

To show that U is an almost downward translation invariant ultrafilter we
must show that for each X ∈ U we can find an x 6= 0 such that X − x ∈ U .
Suppose X ∈ U , and find j so that X = G∗j ⊇ FS(〈xi〉i>j). For every y ∈
FS(〈xi〉i>j+1), we have xj+1 + y ∈ X, so X − xj+1 ⊇ FS(〈xi〉i>j+1). Because
{Gi | i ∈ N} is a downward translation algebra, there is a k such that Gk =
X − xj+1. If t = max{k, j + 1}, then G∗k ⊇ FS(〈xi〉i>t), so G∗k ∩ Gk 6= ∅. Thus
G∗k = Gk, so X − xj+1 ∈ U as desired. Summarizing, we have used (1) to
find an almost downward translation invariant ultrafilter on a given downward
translation algebra, completing the proof of the theorem. a
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The remainder of this section extends the equivalence of the preceding theorem
to a version of Milliken’s Theorem. This proof will use the functional variant of
the iterated Hindman’s Theorem which appears as statement (2) in the following
result.

Lemma 4. (RCA0) The following are equivalent:
(1) IHT (See Theorem 3 for a full statement.)
(2) Given a collection of functions {fi | i ∈ N}, each defined on N with a

bounded range, there is a sequence 〈xi〉i∈N such that for each j, fj is con-
stant on FS({xi | i > j}).

Proof. To prove that (2) implies (1), just let fj be the characteristic function
for Gj . To prove the converse, if fj : N → k, for each i < k define Gji =
{x | fj(x) = i}, and add the sets Gj0 , . . . , Gjk−1 to the collection for (1). Note
that if FS(X) is homogeneous for Gj0 , . . . , Gjk−1 , then fj is constant on FS(X).

a
Now we are ready to introduce Milliken’s Theorem using the following termi-

nology. Given two finite subsets A and B of N, we write A < B if maxA < minB.
As a convenient shorthand, we will write

∑
A for

∑
x∈A x. Let FSn(X) denote

the set of all n element sets of the form (
∑
A0, . . . ,

∑
An−1), where for each

i < j < n, we have Ai ⊆ X, Aj ⊆ X, and Ai < Aj .
In showing that Milliken’s Theorem is equivalent to the iterated Hindman’s

Theorem, it is useful to have the generalized version which appears as statement
(2) in the following lemma. The original proof of Milliken’s theorem appears in
[5].

Lemma 5. (RCA0) The following are equivalent:
(1) MT(n) (Milliken’s theorem for n-tuples.) If f : [N]n → k then there is an

increasing sequence X = 〈xi〉i∈N such that f is constant on FSn(X).
(2) Suppose S ⊆ N and f : [N]n → k. Then there is an increasing sequence
〈Ai〉i∈N of finite subsets of S such that for A = {

∑
Ai | i ∈ N}, the function

f is constant on FSn(A).

Proof. The statement of (1) is a special case of (2) where S is set equal to
N. Consequently, we need only prove that (1) implies (2).

Fix S, f , n, and k as in the statement of (2). Given any infinite sequence
of integers and any finite collection of moduli, we can find a finite subsequence
which sums to a value which is congruent to 0 for each of the given moduli. Con-
sequently, without loss of generality, we may assume that S = 〈si〉i∈N satisfies
the congruence conditions

i < j implies ∀t ≤ si(sj ≡ 0 mod t).

Define h : FS(S) → N by setting h(
∑
i∈F si) =

∑
i∈F 2i for each finite subset

F of N. Because of the congruence condition on S, h is bijective. Thus h−1 is
well-defined, and we may define g : [N]n → k by

g(m1, . . . ,mn) = f(h−1(m1), . . . , h−1(mn)).

Apply (1) to g to find a homogenous set for g and denote it by 〈bi〉i∈N. As with
S, we may assume that for i < j, we have ∀t ≤ bi + 1(bj ≡ 0 mod t). For each
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j, find the unique F such that bj =
∑
i∈F 2i, and let Aj = {si | i ∈ F}. The

congruence condition on 〈bi〉i∈N insures that the sequence 〈Aj〉j∈N is increasing.
The choice of g guarantees that if A = {

∑
Aj | j ∈ N}, then f is constant on

FSn(A), as desired.
As an alternative proof, one could utilize a version of Milliken’s Theorem for

unions, emulating the version of Hindman’s Theorem for unions presented in [1].
An argument of this sort appears in Chapter 7 of [4]. a

We conclude the section with the proof that Milliken’s Theorem is equivalent
to the iterated version of Hindman’s Theorem appearing in Theorem 3. Con-
sequently, for natural numbers n ≥ 3, MT(n) can be appended to the list of
equivalent statements in Theorem 3.

Theorem 6. For each standard natural number n ≥ 3, RCA0 can prove that
the following are equivalent:

(1) IHT (Iterated Hindman’s Theorem.) See Theorem 3 for a full statement.
(2) MT(n) (Milliken’s Theorem for n-tuples.) See Lemma 5 for a full statement.

Proof. To prove that (2) implies (1), we assume RCA0 and Milliken’s Theo-
rem for triples. Let {Gi | i ∈ N} be a collection of subsets of N as in the statement
of (1). For k < m < n, let f(k,m, n) = 1 if for every j ≤ k, m ∈ Gj if and only
if n ∈ Gj . Let f(k,m, n) = 0 otherwise. Apply (2) to f to find a homogeneous
set X = 〈xi〉i∈N for f . A pigeonhole argument shows that f(FS3(X)) = 1. Since
j ≤ xj for all j, {xi | i > j} satisfies Hindman’s theorem for Gj .

To prove that (1) implies (2), we begin by showing that RCA0 plus (1) proves
that MT(n) implies MT(n+1). Assume RCA0, IHT, and MT(n) and fix a function
f : [N]n+1 → k. Let 〈~yi〉i∈N be an enumeration of [N]n and define a sequence of
functions fj : N → k by setting fj(m) = f(~yj ,m). Using IHT, apply statement
(2) of Lemma 4 to {fj | j ∈ N} to find a homogeneous set X = 〈xi〉i∈N such that
for each j, fj is constant on FS({xk | k > j}. Define g : FSn(X)→ k by setting
g(y1, y2, . . . , yn) = f(y1, y2, . . . yn, x) where x is the least element of X greater
than yn. Applying MT(n) in the guise of statement (2) from Lemma 5 to the
function g yields a sequence Y = 〈yi〉i∈N such that f is constant on FS(n+1)(Y ),
as desired.

To complete the proof that (1) implies (2), we point out that IHT implies
Hindman’s Theorem, which is identical to Milliken’s Theorem for singletons.
Using this as a base case and the preceding paragraph as an induction step, we
conclude that for each standard natural number k, RCA0 proves that IHT implies
MT(k). a

Because the induction in the preceding proof is external rather than within
the formal system, the proof does not show that RCA0 + IHT implies ∀n MT(n).

2. A computable restriction. The main result of this section is that RCA0

with some additional induction proves Hindman’s Theorem for those partitions
G such that 〈G〉 does not contain all the singleton sets. The notation 〈G〉 is an
abbreviation for 〈{G}〉, the downward translation algebra generated by a single
set G. We begin with a restriction of one of the implications of Theorem 3.
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Theorem 7. (RCA0) Fix G ⊆ N . If there is an almost downward translation
invariant ultrafilter on the downward translation algebra 〈G〉, then Hindman’s
Theorem holds for G.

Proof. Assume RCA0, suppose that G ⊆ N , and let U be an almost down-
ward translation invariant ultrafilter on 〈G〉. Define a sequence (of indices) of
nested sets 〈Xi〉 and an increasing sequence of integers 〈xi〉 as follows. Set X0

to be whichever of G and Gc is in U , and let x0 = 0. Suppose that Xn ∈ U
and xn have been chosen. Since U is an almost downward translation invari-
ant ultrafilter, applying Lemma 1 we can find a least xn+1 ∈ Xn such that
xn+1 > xn and Xn − xn+1 ∈ U . Let Xn+1 = Xn ∩ (Xn − xn+1). Emulating the
induction argument from the proof that (2) implies (1) in Theorem 3, show that
FS(〈xn〉n>0) ⊆ X0, thereby proving that Hindman’s Theorem holds for G. a

Lemma 8. (RCA0) If the downward translation algebra 〈G〉 contains no sin-
gletons, then Hindman’s Theorem holds for G.

Proof. Suppose 〈G〉 contains no singletons. Let U be the principal ultrafilter
generated by 0, so U = {X ∈ 〈G〉 | 0 ∈ X}. Pick X ∈ U . Since X is not a
singleton, there is an x 6= 0 such that x ∈ X. Since x ∈ X, we have 0 ∈ X − x,
so X − x ∈ U . Thus U is an almost downward translation invariant ultrafilter.
By Theorem 7, Hindman’s theorem holds for G. a

The preceding argument may be extended to a broader class of algebras, but
the modifications use the induction scheme on Σ0

2 formulas, which is denoted by
Σ0

2−IND.

Lemma 9. (RCA0+Σ0
2−IND) If the downward translation algebra 〈G〉 contains

finitely many singletons, then Hindman’s Theorem holds for G.

Proof. Suppose that 〈G〉 contains finitely many singletons. We will show
that there is a set H differing from G only on a finite initial interval, such that
〈H〉 contains no singletons.

If 〈G〉 contains no singletons, let H = G. Otherwise, let {m} be the largest
singleton in 〈G〉. Let G0, . . . G2m+1−1 be an enumeration of all subsets of N
differing from G only at or below m. Note that by applying translations and
Boolean operations to G and {m}, we may construct each Gi. Thus for each
i, 〈Gi〉 ⊆ 〈G〉 and in particular, the singletons of each 〈Gi〉 are a subset of the
singletons of 〈G〉. Furthermore, the assertion “{j} is an element of 〈Gi〉” holds
if and only if there is a finite collection of translations of Gi and Gci such that
for every n, n is in the intersection of the translations if and only if n = j. This
assertion is expressible by a Σ0

2 formula. By bounded Σ0
2 comprehension (which

is provable in RCA0 from Σ0
2 induction [6]), there is a set X such that for every

i < 2m+1 − 1 and j ≤ m, (i, j) ∈ X if and only if {j} ∈ Gi. If there is an i such
that Gi contains no singletons, pick the first such i and let H = Gi. Otherwise
use X to define the set Y = {mi | i < 2m+1 − 1}, the collection containing the
maximum singleton from each Gi. Let p be the minimum of Y , and let H be
the first Gi for which p is the largest singleton.

We will now show that 〈H〉 contains no singletons. If 〈H〉 contains a singleton,
then it contains {p} as constructed above. Since 〈H〉 = 〈Hc〉 we may relabel as
needed to insure p ∈ H.
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Because 〈H〉 is a boolean algebra generated by downward translations of H
and Hc, {p} is expressible as a union of intersections of translations of H and
Hc. Furthermore, because {p} is a singleton, we may discard all but the first
nonempty element of the union, and write {p} as an intersection of translations of
H and Hc. By way of contradiction, suppose {p} is expressed as the intersection
of a collection of such translations, and H itself is not in the collection. Since
p /∈ Hc, the collection must consist entirely of non-zero translations of H and
Hc. Adding the value of the smallest translation to each of these sets yields a
collection of elements of 〈H〉 whose intersection is a singleton which is greater
than p, contradicting the fact that {p} is the largest singleton in 〈H〉. Thus, H
must be included in any intersection defining {p}, and we may write

{p} = H ∩
⋂
k∈F

(Hdk − k)

where F is a finite set of positive natural numbers and dk indicates whether or
not to take the complement of H. Note that ∩k∈F (Hdk − k) ⊆ Hc ∪ {p}.

Now consider 〈H ′〉 where H ′ = H−{p}. Suppose by way of contradiction that
{p} ∈ 〈H ′〉. As argued above, we must be able to express {p} as the intersection
of a collection of translations of H ′ and H ′c. Since p /∈ H ′, we know H ′ is not
in the collection. If H ′c is not in the collection, then 〈H ′〉 contains a singleton
larger than p. However, H ′ = H ∩ {p}c ∈ 〈H〉, so 〈H ′〉 ⊆ 〈H〉, implying that
〈H ′〉 can contain no singletons larger than p. Thus any intersection defining {p}
in 〈H ′〉 includes H ′c, and we may write

{p} = H ′
c ∩

⋂
k∈W

(H ′dk − k)

where W is a finite collection of positive integers. Note that ∩k∈W (H ′dk − k) ⊆
(H ′c)c ∪ {p} = H.

Combining the preceding two centered equations, we have

{p} ⊆
⋂
k∈F

(Hdk − k) ∩
⋂
k∈W

(H ′dk − k) ⊆ (Hc ∪ {p}) ∩H = {p}.

Since H ′ ∈ 〈G〉, this shows that {p} is expressible as an intersection consisting
entirely of nonzero translations of H and Hc, yielding a contradiction. Thus,
{p} /∈ 〈H ′〉. Since 〈H ′〉 is closed under downward translation, this shows that
any singletons in 〈H ′〉 must be strictly less than p. However, H ′ differs from G
only at or below m ≥ p, so 〈H ′〉 must contain a singleton greater than or equal
to p, yielding a final contradiction and proving that 〈H〉 contains no singletons.

We have shown that H differs from G only at or below m, and H has no
singletons. By Lemma 8, Hindman’s Theorem holds for H. Given an infinite
homogeneous set Z for H, the set {n ∈ Z | n > m} is an infinite homogeneous
set for G. Thus Hindman’s Theorem holds for G. a

Theorem 10. (RCA0 + Σ0
2−IND) If the downward translation algebra 〈G〉

doesn’t contain all the singletons, then Hindman’s Theorem holds for G.

Proof. By closure under downward translation, if 〈G〉 contains a singleton
{p}, it contains all singletons {n} such that n < p. Thus, if 〈G〉 doesn’t contain
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all the singletons, it must contain at most finitely many singletons. By Lemma
9, Hindman’s Theorem holds for G. a

Corollary 11. If G is computable and 〈G〉 doesn’t contain all the singletons,
then there is a computable set satisfying Hindman’s Theorem for G.

Proof. The standard natural numbers and the computable sets form a model
for RCA0 + Σ0

2−IND. If G is in this model and 〈G〉 doesn’t contain all the single-
tons, then by Theorem 10, a homogeneous set for G must lie in the model. Since
all the sets in the model are computable, the homogeneous set is computable. a

The contrapositive of the preceding statement is particularly interesting in that
it draws a purely algebraic conclusion from a computability theoretic hypothesis.
Here is the contrapositive:

Corollary 12. If G is computable and no computable set satisfies Hindman’s
Theorem for G, then 〈G〉 must include all the singletons.

A partition satisfying the hypothesis of Corollary 12 is constructed in Theorem
2.2 of [1].
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