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Abstract We analyze the logical strength of theorems on marriage problems with
unique solutions using the techniques of reverse mathematics, restricting our atten-
tion to problems in which each boy knows only finitely many girls. In general, these
marriage theorems assert that if a marriage problem has a unique solution then there
is a way to enumerate the boys so that for every m, the first m boys know exactly
m girls. The strength of each theorem depends on whether the underlying marriage
problem is finite, infinite, or bounded.
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Our goal is to analyze the logical strength of some marriage theorems using the

framework of reverse mathematics. The subsystems of second order arithmetic used
here are RCA0, which includes comprehension for recursive (also called computable)
sets of natural numbers, WKL0, which appends a weak form of König’s Lemma for
trees, and ACA0, which appends comprehension for arithmetically definable sets.
Simpson’s book [5] provides detailed axiomatizations of the subsystems and exten-
sive development of the program of reverse mathematics.

We use the standard anthropocentric terminology for marriage theorems. A mar-
riage problem consists of a set B of boys, a set G of girls, and a relation R ⊂ B×G
where (b,g) ∈ R means “b knows g.” A solution of the marriage problem is an injec-
tion f : B→G such that for all b ∈ B, (b, f (b)) ∈ R. Informally, f assigns a spouse to
each boy, chosen from among his acquaintances and avoiding polygamy. In general,
marriage theorems provide necessary and sufficient conditions for the existence of
solutions or, in our case, for the existence of unique solutions. These sorts of results
are often expressed using other terminology such as transversals, systems of distinct
representatives (SDRs), and matchings in bipartite graphs.
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As a notational convenience, we use some set theoretic notation as abbreviations
for more complicated formulas of second order arithmetic. If b ∈ B, we write G(b)
for {g ∈ G | (b,g) ∈ R}. In the marriage problems for this paper each boy knows
at most finitely many girls, so for each b, RCA0 can prove the existence of G(b).
Although G(b) looks like function notation, it is not. In general, RCA0 can prove the
existence of a function uniformly mapping each boy to (the integer code for) the finite
set G(b) if and only if the marriage theorem is bounded, as defined after Theorem 2.
We further abuse this notation by using formulas like g ∈ G(B0) to abbreviate ∃b ∈
B0((b,g) ∈ R). In settings that address more than one marriage problem, we write
GM(B0) to denote girls known by boys in B0 in the marriage problem M. Cardinality
notation like |X | ≤ |Y | abbreviates the assertion that there is an injection from X into
Y . The formula |X |< |Y | abbreviates the conjunction of |X | ≤ |Y | and |Y | 6≤ |X |. For
finite sets, RCA0 can prove many familiar statements about cardinality, for example,
if X is finite and y /∈ X then |X |< |X ∪{y}|.

Given a marriage problem M = (B,G,R) with a solution f , for any B0 ⊂ B the
restriction of f is an injection of B0 into G(B0). Consequently, RCA0 proves that
if M has a solution then |B0| ≤ |G(B0)| for every B0 ⊂ B. Philip Hall [3] proved
the converse for finite marriage problems. The following theorem shows that Philip
Hall’s result can be formalized and proved in RCA0 and appears as Theorem 2.1 of
Hirst [4].

Theorem 1 (RCA0) If M = (B,G,R) is a finite marriage problem satisfying |B0| ≤
|G(B0)| for every B0 ⊂ B, then M has a solution.

Marshall Hall, Jr. [2] extended Philip Hall’s theorem to infinite marriage prob-
lems. The following theorem shows that his result is equivalent to ACA0 and appears
as Theorem 2.2 of Hirst [4]. Marriage problems in which boys are allowed to know
infinitely many girls are considerably more complex and not considered in this paper.

Theorem 2 (RCA0) The following are equivalent:

1. ACA0.
2. If M = (B,G,R) is a marriage problem such that each boy knows only finitely

many girls and |B0| ≤ |G(B0)| for every finite B0 ⊂ B, then M has a solution.

Suppose that M = (B,G,R) is a marriage problem in which B and G are subsets of
N. We say that M is bounded if there is a function h : B→G such that for each b ∈ B,
G(b)⊆ {0,1, . . . ,h(b)}. The function h acts as a uniform bound on the girls that each
boy knows, and also insures that each boy knows only finitely many girls. Given such
a bounding function, recursive comprehension proves the existence of the function
mapping each b to (the code for) the finite set G(b). As illustrated by the following
theorem, bounded marriage theorems are often weaker than their unbounded analogs.
The following appears as Theorem 2.3 of Hirst [4].

Theorem 3 (RCA0) The following are equivalent:

1. WKL0.
2. If M = (B,G,R) is a bounded marriage problem such that |B0| ≤ |G(B0)| for

every finite B0 ⊂ B, then M has a solution.
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Our goal is to analyze theorems on necessary and sufficient conditions for mar-
riage problems to have unique solutions. A marriage problem with a single boy has a
unique solution if and only if he knows exactly one girl. The following lemma shows
that any finite marriage problem with a unique solution must contain such a boy.

Lemma 1 (RCA0) If M = (B,G,R) is a finite marriage problem with a unique solu-
tion f, then some boy knows exactly one girl.

Proof Suppose we have M and f as above with |B|= n. Note that |GM(B)|= n, since
if |GM(B)| > n we could construct a new solution to M using a girl not in the range
of f , contradicting the uniqueness of f .

Let s be the smallest nonzero number such that there is a B0 ⊂ B with |B0| =
|GM(B0)| = s. We know such an s exists by the Σ 0

0 least element principle, a conse-
quence of Σ 0

1 induction. If s = 1 then we have proved the lemma. Suppose by way
of contradiction that s > 1 and choose b0 ∈ B0. Since s > 1, |GM(b0)| > 1, so we
may choose g1 ∈ GM(b0) such that f (b0) 6= g1. Consider the new marriage problem
M′ = (B0−{b0},GM(B0)−{g1},R′) where R′ is the restriction of R to the sets of M′.
We claim that M′ has no solution. To see this, let h be a solution of M′ and note that
h∪ (b0,g1) is a matching of (B0,GM(B0)) distinct from f . Since |B0|= |GM(B0)|, f
matches boys not in B0 to girls not in GM(B0), so we may define

f ′(b) =


g1 if b = b0

h(b) if b ∈ B0−{b0}
f (b) otherwise.

This f ′ is a solution of M differing from f at b0, contradicting the uniqueness of f .
Thus M′ has no solution. Apply Theorem 1 and find a set of boys B1 ⊂ B0−{b0}
who know too few girls, that is, |GM′(B1)|< |B1|. Since f is a solution of M, |B1| ≤
|GM(B1)|. Thus,

|GM′(B1)|< |B1| ≤ |GM(B1)| ≤ |GM′(B1)∪{g1}| ≤ |GM′(B1)|+1.

Consequently, |B1| = |GM(B1)|. However, |B1| < |B0|, contradicting the minimality
of s. Therefore s > 1 cannot hold, completing the proof of the lemma. ut

Now we can formulate a theorem on unique solutions to finite marriage problems.
Clearly, if we can line up the boys b1,b2, . . . ,bn so that for each m ≤ n the first m
boys know exactly m girls, then the marriage problem has a unique solution. This
implication is provable in RCA0, as is its extension to infinite marriage problems.
The following theorem shows that the converse for finite problems is provable in
RCA0. As noted by Chang [1], the combinatorial statement in the theorem is implicit
in the work of Marshall Hall, Jr. [2].

Theorem 4 (RCA0) If M = (B,G,R) is a finite marriage problem with n boys and a
unique solution, then there is an enumeration of the boys 〈bi〉i≤n such that for every
1≤ m≤ n, we have |G(b1, . . . ,bm)|= m.
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Proof Suppose M is as above. Working in RCA0, we will construct a sequence of
initial segments of 〈bi〉i≤n. Apply Lemma 1 and let b1 be the first boy (in some enu-
meration of B) such that |G(b1)| = 1. Suppose that t < n, 〈bi〉i≤t is defined, and
|G(b1, . . . ,bt)|= t. Since M has a unique solution, so does the revised marriage prob-
lem M′ = (B−{b1, . . .bt},G−G(b1, . . . ,bt),R′), where R′ is the restriction of R to the
sets of M′. Apply Lemma 1 and let bt+1 be the first boy not in {b1, . . . ,bt} such that
|GM′(bt+1)| = 1, completing the definition of 〈bi〉i≤t+1. The desired enumeration is
the nth initial segment. ut

In light of the comments preceding Theorem 4, it could be reformulated as a
biconditional statement, giving a necessary and sufficient condition for the existence
of unique solutions to finite marriage problems. The same reformulation could be
carried out for Theorems 5 and 6 below. Now we will analyze a version of Theorem
4 in the infinite setting, using ACA0 in its proof. Paralleling the proof of Theorem 4,
we begin with a lemma.

Lemma 2 (ACA0) Suppose M = (B,G,R) is a marriage problem such that every boy
knows finitely many girls and M has a unique solution. For any b ∈ B there is a finite
set F such that b ∈ F ⊂ B and |G(F)|= |F |.

Proof Suppose f is the unique solution of M = (B,G,R). Let b∈ B. If |G(b)|= 1, the
set F = {b} satisfies the conclusion of the lemma. If |G(b)|> 1, a more complicated
construction is required.

Assume |G(b)| > 1 and let g0 = f (b) and G(b) = {g0,g1, . . . ,gm}. Consider the
marriage problem M1 = (B−{b},G−{g1},R1) where R1 denotes the restriction of
R to the sets of M1. Given a solution f1 of M1, the function f1 ∪ (b,g1) would be a
solution of M distinct from f . Thus M1 has no solution. Using ACA0, we may apply
Theorem 2 and find a finite collection of boys E1 ⊂ B−{b} such that |GM1(E1)| <
|E1|. Since f is a solution of M, |E1| ≤ |GM(E1)|. Thus,

|GM1(E1)|< |E1| ≤ |GM(E1)| ≤ |GM1(E1)∪{g1}| ≤ |GM1(E1)|+1.

Consequently, |E1| = |GM(E1)| and hence g1 ∈ GM(E1). For each i with 1 < i ≤ m,
consider gi ∈G(b) and search for a similar finite set, finding an Ei ⊂ B with |G(Ei)|=
|Ei| and gi ∈G(Ei). Since each Ei is a finite set with an integer code, RCA0 suffices to
prove the existence of the integer code for the sequence E1,E2, . . . ,Em and the integer
code of the finite set consisting of the union F = {b}∪

⋃
i≤m Ei. Summarizing, F is

finite and b ∈ F ⊂ B.
To complete the proof, we need only show that |F | = |G(F)|. Suppose by way

of contradiction that |G(F)| > |F |. In this case, since f maps F into but not onto
G(F), we can choose g ∈G(F) such that for every c ∈ F , f (c) 6= g. Since f (b) = g0,
g 6= g0. If g ∈G(b), then for some i≥ 1 we have g = gi and g ∈G(Ei). Since G(F) =
G(b)∪

⋃
i≤m G(Ei), we may fix an i such that g ∈G(Ei). Since |Ei|= |G(Ei)|, f must

map Ei onto G(Ei), so for some c ∈ Ei, f (c) = g. This contradicts our choice of g,
showing that |G(F)| ≤ |F |. Since f is an injection of F into G(F), we must have
|F |= |G(F)|. ut
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Note that the only use of ACA0 in the preceding proof is the application of Theo-
rem 2. All other aspects of the proof can be carried out in RCA0. This will be useful
in adapting our results to the bounded marriage theorem setting.

Now we can analyze the extension of Theorem 4 to infinite marriage problems.
While Theorem 4 is implicit in the work of Marshall Hall, Jr. [2], we were unsuccess-
ful in locating this infinite extension in the combinatorics literature. Like the result of
Marshall Hall, Jr. analyzed in Theorem 2, this statement is equivalent to ACA0.

Theorem 5 (RCA0) The following are equivalent:

1. ACA0.
2. Suppose M = (B,G,R) is a marriage problem such that every boy knows finitely

many girls. If M has a unique solution then there is an enumeration of the boys
〈bi〉i≥1 such that |G(b1, . . . ,bn)|= n for every n≥ 1.

Proof To prove that (1) implies (2), we will work in RCA0, making each application
of ACA0 explicit. Let M = (B,G,R) be a marriage problem as described in (2), with
unique solution f . Let 〈b′i〉i≥1 be an arbitrary enumeration of B. Search for a finite
set F1 ⊂ B such that b′1 ∈ F1 and |GM(F1)| = |F1|. Define n1 = |F1|. By Lemma 2,
this search must succeed. Note that ACA0 is used here in the application of Lemma 2
and to determine the value of |GM(F1)|. We claim that f restricted to F1 is a unique
solution of (F1,G(F1),R). To see this, suppose f ′ is a solution of (F1,G(F1),R) dif-
fering from f . Since f is injective and maps F1 onto G(F1), f must map B−F1 into
G−G(F1). Thus the extension of f ′ defined by

f ′(b) =

{
f ′(b) if b ∈ F1

f (b) if b ∈ B−F1

is a solution of M differing from f , contradicting the uniqueness of f . Since the
marriage problem (F1,G(F1),R) has a unique solution, by Theorem 4, there is an
enumeration of the boys 〈b1

1,b
1
2, . . . ,b

1
n1
〉 of F1 such that |G(b1

1,b
1
2, . . . ,b

1
m)| = m for

every m with 1≤ m≤ n1.
Suppose F1, . . . ,Fj are sequences that have been constructed so that for each i≤ j

and each t ≤ ni, Fi = 〈bi
1,b

i
2, . . . ,b

i
ni
〉 and

|G({bi
1,b

i
2, . . . ,b

i
t}∪

⋃
k<i

Fk)|= t +∑
k<i

nk.

Note that f restricted to B−
⋃

k≤ j Fj is a unique solution of the marriage problem
M j+1 = (B−

⋃
k≤ j Fk,G−

⋃
k≤ j G(Fk),R). Let b′ denote the first element (in our initial

enumeration of B) appearing in B−
⋃

k≤ j Fk. Search for a finite set Fj+1 ⊂ B−
⋃

k≤ j Fk
such that b′ ∈ Fj+1 and |GM j+1(Fj+1)| = |Fj+1|. Define n j+1 = |Fj+1|. As before,
Lemma 2 insures that the search will succeed. ACA0 is applied here in the use of
Lemma 2 and in determining values of |GM j+1(Fj+1)|. As before, f restricted to Fj+1
is a unique solution of M j+1 restricted to Fj+1, so by Theorem 4 there is an enumer-
ation of the boys 〈b j+1

1 ,b j+1
2 , . . . ,b j+1

n j+1〉 in Fj+1 such that |GM j+1(b
j+1
1 , . . . ,b j+1

t )|= t
for every t with 1≤ t ≤ n j+1. Consequently, for every 1≤ t ≤ n j+1,

|G({b j+1
1 ,b j+1

2 , . . . ,b j+1
t }∪

⋃
k≤ j

Fk)|= t + ∑
k≤ j

nk.
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Given the existence of each finite sequence Fj, recursive comprehension suffices to
prove the existence of the concatenation of the finite sequences 〈〈b j

1, . . . ,b
j
n j〉 | j≥ 1〉,

and this sequence satisfies the conclusion of item (2) in the statement of the theorem.
To prove that (2) implies (1), we will work in RCA0 and assume (2). By Lemma

III.1.3 of Simpson [5], it suffices to use (2) to prove the existence of the range of an
arbitrary injection. Let f : N→ N be an injection. Using recursive comprehension,
construct the marriage problem M = (B,G,R) with

• B = {cn | n ∈ N}∪{dn | n ∈ N},
• G = {gn | n ∈ N}∪{rn | n ∈ N},
• for every i, (ci,gi) ∈ R and (di,ri) ∈ R, and
• if f (m) = n then (cn,rm) ∈ R.

Note that each boy dn knows exactly one girl and each boy cn knows at most two
girls. Let h : B→ G such that h(di) = ri and h(ci) = gi for each i ∈ N. Clearly, h is
injective and a solution to M. Note that any solution must match each di with ri, thus
no ci can be matched to a ri and so every ci must be matched with gi. Hence, h is a
unique solution to M.

Apply item (2) and let 〈bi〉i≥1 be an enumeration of B such that for every n≥ 1 we
have |G(b1, . . . ,bn)| = n. Suppose f ( j) = k. Then (ck,r j) ∈ R and G(ck) = {gk,r j}.
Since ck ∈ B, for some n we have ck = bn. If d j /∈ {b1, . . . ,bn−1} then for each i ≤
n−1, G(bi)∩G(ck) = /0. In this case,

|G(b1, . . . ,bn)|= |G(b1, . . . ,bn−1)|+ |G(ck)|= (n−1)+2 = n+1,

contradicting |G(b1, . . . ,bn)| = n. Summarizing, whenever f ( j) = k, d j must appear
before ck in the enumeration of the boys. Thus k is in the range of f if and only
if for some b appearing before ck in the enumeration, b = d j and f ( j) = k. Since
we need only check finitely many values of f to see if k is in the range, recursive
comprehension proves the existence of the range of f , completing the proof of the
theorem. ut

Like Theorem 4, the preceding theorem continues to hold if the implication in
item (2) is changed to a biconditional. While such a formulation provides a com-
plete characterization of the marriage problems with unique solutions, it weakens the
statement of the reversal.

As noted in the introduction, bounded marriage problems are often weaker than
their unbounded versions. This is also true for the following bounded analogs of
Lemma 2 and Theorem 5, as shown by the next two results.

Lemma 3 (WKL0) Suppose M = (B,G,R) is a bounded marriage problem and M
has a unique solution. For any b ∈ B there is a finite set F such that b ∈ F ⊂ B and
|G(F)|= |F |.

Proof Proceed exactly as in the proof of Lemma 2, replacing each application of
Theorem 2 with an application of Theorem 3. While the use of Theorem 2 requires
ACA0, only WKL0 is needed for applications of Theorem 3. Since the balance of
the proof of Lemma 2 can be executed entirely within RCA0, the new proof can be
carried out in WKL0. ut
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Theorem 6 (RCA0) The following are equivalent:

1. WKL0.
2. Suppose M =(B,G,R) is a bounded marriage problem. If M has a unique solution

then there is an enumeration of the boys 〈bi〉i≥1 such that for every n≥ 1, we have
|G(b1, . . . ,bn)|= n.

Proof To prove that (1) implies (2), repeat the corresponding portion of the proof of
Theorem 5, replacing uses of ACA0 with uses of WKL0 as follows. First, substitute
Lemma 3 for Lemma 2 everywhere. Note that the bounding function for M also acts
as a bounding function for any marriage problem created by deleting sets of boys
and girls from M. Consequently, we may use the bounding function and recursive
comprehension to compute G(F) for each finite set F whenever required.

The reversal requires a completely new argument. We will use (2) to prove that
any binary tree (with nodes labeled 0 or 1) with no infinite paths is finite. Toward
this end, suppose by way of contradiction that T is an infinite binary tree with no
infinite paths. As in section III.7 of Simpson [5], we can identify each node of T with
a binary sequence, σ ∈ 2<N. Construct the marriage problem M = (B,G,R) by letting
B = {bσ | σ ∈ T}, G = {gσ | σ ∈ T}, and

R = {(bσ ,gσ ) | σ ∈ T}∪{(bσ ,gσai) | σ ∈ T ∧σ
ai ∈ T}.

Note that since G(bσ ) = {gσ ,gσa0,gσa1}∩ G for all σ , M is a bounded marriage
problem.

Define f : B→ G by f (bσ ) = gσ . We claim that f is a unique solution of M. To
verify this let f1 be a second solution of M where f1(bσ ) = g

σai for some i ∈ {0,1}.
Fix such a σ and i and let σ0 =σ . Given σn let σn+1 = τ where f1(bσn) = gτ . Since f1
is injective, an easy induction argument shows that σn+1 must always be an extension
of σn. Hence, 〈σn | n ∈N〉 forms an infinite path through T , yielding a contradiction.
Thus f is unique.

Since M has a unique solution, we can apply item (2) to M and enumerate the
boys 〈bi〉i≥1 so that |G(b1, . . . ,bn)|= n for all n. Recursive comprehension proves the
existence of translation functions between the two types of subscripting on the boys.
Let r : T → N be the bijection defined by r(σ) = n if and only if bn = bσ .

We claim that each boy appears in the enumeration after all of his proper succes-
sors in the tree. Using σ ≺ τ to denote that σ is a proper initial segment of τ , our claim
becomes: if σ ≺ τ ∈ T , then r(σ)> r(τ). To prove this, suppose by way of contradic-
tion that for some σ ≺ τ ∈ T , r(σ)< r(τ). By the Σ 0

0 least element principle (a con-
sequence of Σ 0

1 induction) we can fix a shortest sequence τ such that r(σ)< r(τ) for
some σ ≺ τ . Because τ is shortest, there is no α such that r(α)> r(σ) and σ ≺α ≺ τ .
Thus we may assume that τ is an immediate successor of σ . Summarizing, we have
r(σ)< r(τ) and τ = σai for some i ∈ {0,1}. Let B′ = {b1,b2, . . . ,br(σ)}. Using the
node-based indices for the boys, we can write B′ = {bα | r(α) ≤ r(σ)}. Note that
r(τ) > r(σ), so bτ /∈ B′. By the definition of M, (bσ ,gτ) ∈ R, so gτ ∈ G(B′). Also,
for every bα ∈ B′, (bα ,gα) ∈ R, so gα ∈ G(B′). Thus |G(B′)| > |B′|. However, B′

is an initial segment of the enumeration of B provided by the application of (2), so
|G(B′)| = |B′|. This contradiction completes the proof that each boy appears in the
enumeration after all of his proper successors in the tree.
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The empty sequence 〈 〉 is in T , so for some n, b〈 〉 = bn Since bn appears after
every boy corresponding to a nonempty node of T , we know T is finite. This contra-
dicts our initial assumption that T is infinite, and completes the proof of the reversal
and the theorem. ut

At this time, we have been unable to determine the exact strength of some of the
lemmas in the preceding material. For example, although we know that Lemma 2
is provable in ACA0, we do not know if it can be proved in a weaker subsystem.
Consider the following formulation of an infinite version of Lemma 1: If M is a
marriage problem in which each boy knows only finitely many girls and M has a
unique solution, then some boy knows exactly one girl. Lemma 2 and Lemma 1 give
a proof in ACA0, but the following theorem shows that at most WKL0 is required.

Theorem 7 (WKL0) Suppose M is a marriage problem in which every boy knows at
least two girls and at most finitely many girls. If M has a solution, then M has at least
two solutions.

Proof Assume WKL0. Let M =(B,G,R) be a marriage problem with solution f : B→
G and suppose that every boy knows at least two girls. Define a function h0 : B→ G
by letting h0(b) be the first girl other than f (b) that b knows. Formally, h0(b) =
µg((b,g) ∈ R∧ f (b) 6= g). Define h1 : B→ G by h1(b) = max{h0(b), f (b)} and let
R′ = {(b,g) | f (b) = g∨h0(b) = g}. Recursive comprehension proves the existence
of h0, h1, and R′. The society M′= (B,G,R′) is bounded by h1 and has f as a solution.
Every boy in M′ knows exactly two girls. By Theorem 6, if f is a unique solution of
M′, then some boy in B knows exactly one girl, contradicting the construction of
M′. Consequently, M′ has at least two solutions. Since every solution of M′ is also a
solution of M, M has at least two solutions as well. ut
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