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abstract. We examine the relationship between a pigeonhole prin-
ciple for trees and induction on Σ0

2 formulas. This analysis is carried
out in the framework of reverse mathematics utilizing a hierarchy of
axiom systems formulated by Harvey Friedman.

Let 2<N denote the set of all finite sequences of zeros and ones. We often
use σ to denote both a finite sequence and the associated finite function,
so σ(0) is the first element of the sequence, and σ(lh(σ)− 1) is the last. If
τ consists of σ with appended elements we write σ ⊆ τ , and write σ ⊂ τ
when τ is a proper extension of σ. Viewing 2<N as a partial order ordered
by the ⊆ relation, we can think of any subset of 2<N as a subtree. A
bijection between a subset S ⊆ 2<N and 2<N that preserves extension is an
order isomorphism. Using this terminology, we can formulate the following
pigeonhole principle on binary trees.

TT(1): Suppose f : 2<N → n for some n ∈ N. Then there is a subtree
S ⊆ 2<N order isomorphic to 2<N and a c < n such that f(σ) = c for
every σ ∈ S.

This pigeonhole principle follows immediately from a version of Hind-
man’s theorem. If we let FIN denote the collection of all nonempty finite
subsets of N, then the familiar finite sum form of Hindman’s theorem [9] is
equivalent to the following statement. (See [1].)

HT: Suppose f : FIN→ n for some n ∈ N. Then there is a sequence 〈Xi〉i∈N
of elements of FIN and a c < n such that

• if i < j then max(Xi) < min(Xj), and
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• for every finite nonempty set J ⊂ N, f(∪j∈JXj) = c.

Here is a proof that HT implies TT(1). Suppose f : 2<N → n. For each
X ∈ FIN, let σX be a sequence in 2<N of length max(X) + 1 such that for
each i, σX(i) = 1 if and only if i ∈ X. Define g : FIN→ n by g(X) = f(σX).
Apply HT to g, and let 〈Xi〉i∈N be the resulting sequence of finite subsets
and let c be the associated color. Define Y〈 〉 = ∅, and for each nonempty

τ ∈ 2<N, let Yτ be the union of X0 or X1, X2 or X3, X4 or X5 and so on,
where the set X2i is included if τ(i) = 0 and X2i+1 is included if τ(i) = 1.
More formally, for nonempty τ ∈ 2<N, let Yτ = ∪i<lh(σ)X2i+τ(i). Then

the set S = {σYτ | τ ∈ 2<N} is a subtree of 2<N and the map taking τ to
σYτ is an order isomorphism between 2<N and S. Furthermore, for each τ ,
f(σYτ ) = g(Yτ ) = c, so S is the desired monochromatic subtree.

Timothy McNicholl [11] asked if the use of Hindman’s theorem is actu-
ally necessary to prove TT(1). Reverse mathematics, based on the axiom
systems formulated by Harvey Friedman [6, 7], provides an excellent tool
set for addressing this type of question. Indeed, HT is not needed to prove
TT(1), as was shown in [3]. We will present a proof of this result below.

We will formalize our proof in the subsystem RCA0. This theory has vari-
able types for natural numbers and sets of natural numbers, basic arithmetic
axioms including induction restricted to Σ0

1 formulas, and the recursive com-
prehension axiom, which (näıvely) asserts the existence of computable sets.
A very detailed discussion of RCA0 can be found in Simpson’s book [12].
Since TT(1) implies the infinite pigeonhole principle, it cannot be proved
in RCA0 [10]. However, if we append the induction scheme for Σ0

2 formulas,
denoted by Σ0

2 − IND, then TT(1) can be proved, as stated in the following
result.

THEOREM 1. (RCA0) Σ0
2 − IND implies TT(1).

Proof. We carry out the proof in RCA0. Suppose f : 2<N → n. Let
{Xj | j < 2n} be the collection of all subsets of {0, 1, . . . n− 1}, enumerated
so that Xi ⊆ Xj implies i ≤ j. Since the entire range of f is included in
some Xj , there is a j such that

∃σ ∀τ ⊇ σ (f(τ) ∈ Xj),

which is clearly a Σ0
2 formula when the finite sequences are identified with

their natural number codes. Σ0
2 − IND implies that there is a least such j.

(For equivalent formulations of induction schema, see Theorem 2.4 of [8].)
Call this least element j0, and choose σ0 such that ∀τ ⊇ σ0 (f(τ) ∈ Xj0).
If c = f(σ0), then every τ ⊇ σ0 can be extended to an element τ ′ with
f(τ ′) = c. We can construct a monochromatic subtree order isomorphic to
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2<N by the following process. Let σ0 be the root node. Fix a level-by-level
enumeration of 2<N. If σ has been added to the tree, for each i ∈ {0, 1}
let τi be the first enumerated extension of σ_i that has color c. Note that
recursive comprehension suffices to prove the existence of this subtree. �

Imitating [3], we will call the monochromatic tree of the preceding proof
the standard tree of color c based at σ0. The fact that HT is not required
for the proof of TT(1) is now an easy corollary.

COROLLARY 2. RCA0 + TT(1) does not prove HT.

Proof. The natural numbers together with the computable sets form a
model of RCA0 + Σ0

2− IND, but not a model of arithmetical comprehension
(since not all arithmetically definable sets are computable.) This model is
not a model of HT, since RCA0 + HT implies arithmetical comprehension
(Theorem 2.6 of [1]). �

Although this shows that HT is not necessary to prove TT(1), it leads
us to ask if Σ0

2 − IND is necessary to prove TT(1). We can address this
question by looking at various combinatorial principles that imply TT(1)
and exploring their relationships to Σ0

2 − IND.

1 Eventually constant tails

The core of the proof of Theorem 1 is locating a node σ such that for every
extension α of σ the spectrum of colors appearing above α is exactly the
same as the spectrum of colors appearing above σ. We can formalize the
existence of such a σ as follows:

ECT(2<N): If f : 2<N → n then ∃σ ∀τ ⊇ σ ∀α ⊇ σ ∃β ⊃ α (f(τ) = f(β)).

This same principle can be expressed for colorings of N.

ECT(N): If f : N→ n then ∃b ∀x ≥ b ∃y > x (f(x) = f(y)).

Informally, ECT(N) asserts that there is a b such that whenever [x,∞) ⊆
[b,∞) then the range of f restricted to [x,∞) is identical to the range of f
restricted to [b,∞). That is, we are saying that the range of f on tails is
eventually constant. The label ECT is a mnemonic for eventually constant
tails.

ECT(2<N) can be substituted for the use of Σ0
2 − IND in the proof of

Theorem 1. The next three lemmas explore the relationships between the
two forms of ECT and Σ0

2 − IND, and the consequences are collected in
Theorem 6.

LEMMA 3. (RCA0) ECT(2<N) implies ECT(N).
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Proof. Working in RCA0, fix f : N → n. Define g : 2<N → n by g(σ) =
f(lh(σ)). Apply ECT(2<N) to g and obtain σ. Let b = lh(σ) and choose x ≥
b. Choose any τ ⊇ σ with lh(τ) = x. By ECT(2<N), there is a β ⊃ τ such
that g(β) = g(τ). Thus lh(β) > x and f(lh(β)) = g(β) = g(τ) = f(x). �

LEMMA 4. (RCA0) ECT(N) implies Σ0
2 − IND.

Proof. By Exercise 11.3.13 of [12], over RCA0 the scheme Σ0
2 − IND is

equivalent to the bounded Σ0
2 comprehension scheme, which is the assertion

that
∀n∃X∀i(i ∈ X ↔ (i < n ∧ ϕ(i)))

where ϕ(i) is a Σ0
2 formula not containing X free. We will use ECT(N) to

derive bounded Σ0
2 comprehension.

Suppose ϕ(i) is ∃x∀yθ(i, x, y), where θ is quantifier free. Fix n. Define
f : N → n + 1 by writing each natural number as mn + i with i < n and
setting

f(mn+ i) =


i if µx < m ∀y < m θ(i, x, y) is not equal to

µx < m+ 1 ∀y < m+ 1 θ(i, x, y)

n otherwise.

In the preceding, when ∀x < m ∃y < m ¬θ(i, x, y), we define the expression
µx < m ∀y < m θ(i, x, y) to be equal to m.

Note that if there is an x such that ∀yθ(i, x, y) then Σ0
1 − IND implies

there is a least such element; call it x0. Applying BΣ0
0, which is also a

consequence of Σ0
1 − IND (see [8], Chapter I, section 2), we can find an m0

so large that ∀t < x0 ¬∀y < m0 θ(i, t, y). Then for any m > m0,

µx < m ∀y < m θ(i, x, y) = x0 = µx < m+ 1 ∀y < m+ 1 θ(i, x, y),

so f(mn+ i) = n. Consequently, on any final segment of [m0n+ i,∞), i is
not in the range of f . Summarizing, if ∃x∀yθ(i, x, y), then eventually i is
omitted from all tails of f .

On the other hand, suppose ¬∃x∀yθ(i, x, y) and fix an element b > 0. If
for every m > b we have ∀x < m ∃y < m ¬θ(i, x, y), then for all m > b we
have f(mn+i) = i and so eventually i is in every tail. Suppose that for some
m > b we have ∃x < m ∀y < m θ(i, x, y). Let x0 be the least element less
than m satisfying ∀y < m θ(i, x0, y). Since ¬∃x∀y θ(i, x, y), let y0 be the
least element such that ¬θ(i, x0, y0). Then µx < y0∀y < y0 θ(i, x, y) = x0,
but µx < y0 + 1 ∀y < y0 + 1 θ(i, x, y) > x0. Hence f(y0n + i) = i for
arbitrarily large values of n. Summarizing, if ¬∃x∀yθ(i, x, y) then eventually
i is in every tail.
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Apply ECT(N) to f to find a b such that the range of f is constant on final
segments of [b,∞). By bounded Σ0

1 comprehension (which is a consequence
of Σ0

1 − IND [12]) the set

Y = {i < n | ∃t > b f(t) = i}

exists. By recursive comprehension, the set X = {i < n | i 6∈ Y } also
exists, and by the preceding paragraphs, i ∈ X if and only if i < n and
∃x∀yθ(i, x, y), as desired. �

LEMMA 5. (RCA0) Σ0
2 − IND implies ECT(2<N).

Proof. Suppose f : 2<N → n. Let 〈Xi | i < 2n〉 enumerate the subsets of n
in an order that preserves containment. By the Σ0

2 least element principle
(which is equivalent over RCA0 to Σ0

2− IND [8]), there is a least j such that
we can find a node σ so that ∀τ ⊇ σ(f(τ) ∈ Xj). Since j is the least such
integer, for every τ ⊇ σ, the spectrum of colors appearing above τ must
match that above σ. �

THEOREM 6. (RCA0)The following are equivalent:

1. ECT(2<N).

2. ECT(N).

3. Σ0
2 − IND.

Proof. Immediate from Lemmas 3, 4, and 5. �

Thus, the ECT principles are essentially disguised forms of Σ0
2 induction.

This is a common attribute among many principles that imply TT(1), as
shown in the next section.

2 A result of Corduan, Groszek, and Mileti

Doctors Corduan, Groszek, and Mileti reveal a strong connection between
TT(1) and Σ0

2 − IND in the following conservation result, which appears in
[4].

THEOREM 7. If T is any extension of RCA0 by Π1
1 axioms, then T proves

TT(1) if and only if T proves Σ0
2 − IND.

Since the usual infinite pigeonhole principle, RT(1), can be expressed as a
Π1

1 formula and is known to be equivalent to the scheme BΠ0
1 and therefore

strictly weaker than Σ0
2− IND, an immediate corollary of Theorem 7 is that

RT(1) does not imply TT(1) over RCA0. This result appears as Corollary
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3.8 in [4] and provides the current best strict lower bound on the strength
of TT(1).

Using Theorem 7, we can show that many informal proofs of TT(1) make
use of disguised forms of Σ0

2 − IND. For example, in the next paragraph
we present an alternative proof of a portion of Theorem 6. This new ar-
gument sidesteps the technical details of Lemma 4, but also does not yield
information about ECT(N).

Proof.[Alternative proof that ECT(2<N) implies Σ0
2 − IND over RCA0.]

By Theorem 7, since ECT(2<N) is a Π1
1 sentence it suffices to prove that

ECT(2<N) implies TT(1) over RCA0. Working in RCA0, suppose f : 2<N → n
and apply ECT(2<N) to find a σ such that every extension of σ can be fur-
ther extended to a node β with f(β) = f(σ). As in the proof of Theorem 1,
RCA0 proves the existence of the standard tree of color f(σ) based at σ. �

The following limit principle arises as a natural intermediate step in a
proof of TT(1) from stable Ramsey’s Theorem for pairs (denoted SRT2).

L: Given f : N2 → a such that limn f(x, n) exists for every x ∈ N, there is
a least b such that for some x, limn f(x, n) = b.

Let L+ denote the stronger version of L resulting from replacing “every”
in the hypothesis by the word “some.” Rather than deducing L from SRT2,
we will prove L+ from Σ0

2 − IND. This is sharper, since SRT2 is strictly
stronger than Σ0

2 − IND [2].

LEMMA 8. (RCA0) Σ0
2 − IND implies L+. Consequently, Σ0

2 − IND also
proves L.

Proof. Suppose f : N2 → a and limn f(x, n) exists for some x ∈ N. Thus
there is a b < a such that ∃x∃t∀n(n > t → f(x, n) = b). By the Σ0

2 least
element principle, which is equivalent to Σ0

2 − IND, there is a least such b.
Thus L+ holds. Since predicate calculus proves that L+ implies L, the last
sentence of the lemma follows immediately. �

By proving that L implies TT(1), we create an opportunity for applying
Theorem 7.

LEMMA 9. (RCA0) L implies TT(1).

Proof. Let f : 2<N → a and let 〈σi〉i∈N be an enumeration of 2<N. Let
〈Yi〉i<2a be an enumeration of the power set of {0, 1, . . . a − 1} such that
Yi ⊆ Yj implies i ≤ j. Define g : N2 → 2a by

g(m,n) = µt({f(τ) | τ ⊇ σm ∧ lh(τ) ≤ n} = Yt).
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Note that recursive comprehension suffices to prove the existence of g and
that for fixed m, the function g(m,n) is increasing. By the Π0

1 least element
principle (which is provable in RCA0), for each m there is a least upper
bound on the range of g(m,n). Consequently, for each m, limn g(m,n)
exists. By L, there is a least b and a σm ∈ 2<N such that limn g(m,n) = b.
Since b is least, for every σj extending σm, we have limn g(j, n) = b also.
In particular, every node extending σm can be extended to a node of color
f(σm). Thus, the standard tree of color f(σm) extending σm (as constructed
in the proof of Theorem 1) is isomorphic to 2<N. �

Combining Theorem 7 with the preceding lemmas, we see that L and L+

are disguised forms of Σ0
2 − IND.

COROLLARY 10. (RCA0) The following are equivalent:

1. Σ0
2 − IND.

2. L+.

3. L.

Proof. Lemma 8 shows that over RCA0, item 1 implies item 2, and item 2
implies item 3. Since L is Π1

1, Theorem 7 applied to Lemma 9 shows that
RCA0 proves that item 3 implies item 1. �

We close the section by noting that any proof of TT(1) relying on the
standard tree construction from the proof of Theorem 1 inherently uses
Σ0

2 − IND.

THEOREM 11. (RCA0) The following are equivalent:

1. Σ0
2 − IND.

2. If f : 2<N → a then there is a node σ such that the standard tree of
color f(σ) based at σ is isomorphic to 2<N.

Proof. The proof of Theorem 1 shows that item 1 implies item 2. To prove
the reversal, note that over RCA0, item 2 is equivalent to the statement “if
f : 2<N → a then there is a node σ such that for every n there is a stage
t such that the algorithm for constructing the standard tree of color f(σ)
based at σ halts and produces a tree containing an initial segment order
isomorphic to the full binary tree of height n.” Since this statement is Π1

1

and implies TT(1) over RCA0, by Theorem 7 it implies Σ0
2 − IND. Thus,

item 2 implies item 1 over RCA0. �
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3 Null stable colorings

In this section, we present one more disguised form of induction, a related
though weaker combinatorial principle that is actually equivalent to TT(1),
and a proof of TT(1) from a stable version of Ramsey’s theorem for pairs
in trees. All these results depend on the following notion. Suppose we have
f : 2<N → 2. We say that f is a null stable coloring if for every σ ∈ 2<N

there is a σ′ ⊇ σ such that for every τ ⊇ σ′ we have that f(τ) = 0. Note that
by definition, every null stable coloring is a 2-coloring. Intuitively, f is null
stable if above each node we can find a node above which f is constantly 0.
Given a finite sequence of null stable colorings, we could sequentially apply
the definition of null stable for each coloring and eventually arrive at a node
which is colored 0 for all of the colorings. The next theorem shows that the
existence of such a node is a disguised form of Σ0

2 − IND.

THEOREM 12. (RCA0) The following are equivalent:

1. Σ0
2 − IND.

2. Suppose 〈fi〉i<n is a sequence of null stable colorings of 2<N. Then
there is a σ ∈ 2<N such that fi(σ) = 0 for every i < n.

Proof. We work in RCA0. First, assume Σ0
2 − IND and suppose 〈fi〉i<n

is a sequence of null stable 2-colorings. Define f : 2<N → 2n by f(σ) =∑
i<n fi(σ) · 2i. By Lemma 5 and Σ0

2 − IND, we may apply ECT(2<N) to f
and find a σ0 such that ∀α ⊇ σ0 ∃β ⊃ α f(σ0) = f(β). Suppose, by way
of contradiction, that f(σ0) 6= 0. Fix i < n such that fi(σ0) = 1. Since fi
is null stable, we can find an α0 ⊇ σ0 such that for all β ⊇ α0, fi(β) = 0.
Since σ0 was chosen using ECT(2<N), for some β0 ⊃ α0, f(σ0) = f(β0).
However, fi(σ0) = 1 and fi(β0) = 0, so f(σ0) 6= f(β0), yielding the desired
contradiction. Thus we must have f(σ0) = 0. Since f(σ0) = 0, fi(σ0) = 0
for every i < n.

To prove that item 2 implies item 1, we will use item 2 to deduce TT(1)
and apply Theorem 7. Assume item 2 and let f : 2<N → n. Define the
sequence 〈fi〉i<n by setting fi(σ) = 1 if f(σ) = i and fi(σ) = 0 if f(σ) 6= i.
If each fi was null stable, then by item 2 we could locate a σ such that
fi(σ) = 0 for all i < n, contradicting the fact that f(σ) = i for some
i < n. Thus there is an i0 such that fi0 is not null stable. For this i0, we
can locate a σ0 such that for every σ′ ⊇ σ0 there is a τ ⊇ σ′ such that
fi0(τ) = 1. Choose any τ ⊇ σ0 with fi0(τ) = 1. Then f(τ) = i0 and every
node extending τ has an extension of color i0. Consequently the standard
tree for f of color i0 based at τ witnesses TT(1) for f . Since item 2 is Π1

1,
Σ0

2 − IND follows by Theorem 7. (We could substitute a use of Theorem 11
for Theorem 7 here, if we liked.) �
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The construction in the preceding proof of a single coloring from many
2-colorings suggests a way to exchange one application of TT(1) for many
colors for many simultaneous applications of TT(1) restricted to 2-colorings.
In fact, we will see that the corresponding formulations are provably equiva-
lent. This is of some interest, since TT(1) restricted to any standard number
of colors is a theorem of RCA0. The next theorem capitalizes on this notion,
and even restricts the simultaneous applications to TT(1) for null stable
2-colorings, which for single applications is very clearly a theorem of RCA0.

THEOREM 13. (RCA0) The following are equivalent:

1. TT(1).

2. Suppose that for each i < n, fi : 2<N → 2. Then there is a subtree
S ⊆ 2<N order isomorphic to 2<N such that for each i < n, fi is
constant on S.

3. Item 2 holds in the case where each fi is null stable.

Proof. Assuming RCA0, item 2 can be proved by applying TT(1) to the
function f constructed as in the first paragraph of the proof of Theorem 12.
Since item 3 is a restricted form of item 2, it remains only to prove TT(1)
from item 3.

Suppose f : 2<N → n. Construct fi for i < n as in the reversal for
Theorem 12. If one of fi functions is not null stable, then the standard tree
construction as in the proof of the reversal of Theorem 12 witnesses TT(1)
for f , completing the proof. If all of the fi functions are null stable, then we
may apply item 3 to find a subtree S isomorphic to 2<N and monochromatic
for all the fi functions. Let σ be the root node of S. Now f(σ) = i0 for
exactly one i0 < n, and for every τ in S, fi(τ) = 1 if and only if i = i0.
Consequently, f(τ) = i0 for every τ ∈ S, so S witnesses TT(1) for f . �

Using the ideas from this section, we close by proving TT(1) from a stable
version of Ramsey’s theorem in trees for pairs and two colors. This is a tree
analog of the proof of RT(1) from SRT2 in [2].

We adopt the notation from [5] for the following. A function on pairs
of comparable tree nodes f : [2<N]2 → k is said to be 3-stable if for each
σ ∈ 2<N there is a c < k such that for every σ′ ⊇ σ there exists τ ⊃ σ′ with
f(σ, ρ) = c for all ρ ⊇ τ . The principle S3TT2

2 asserts that every 3-stable
two coloring of comparable pairs from 2<N has a monochromatic subtree
isomorphic to 2<N.

THEOREM 14. (RCA0) S3TT2
2 implies TT(1).
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Proof. Assume RCA0 and suppose f : 2<N → n. Define g : [2<N]2 → 2
for σ ⊂ τ by setting g(σ, τ) = 1 if and only if f(σ) = f(τ). If σ witnesses
that g is not 3-stable, then the standard tree for f based at σ with color
f(σ) witnesses TT(1) for f . If g is 3-stable, we may apply S3TT2

2 to find
a monochromatic subtree S for g. Select a sequence of n + 1 comparable
nodes in T . Some pair in this sequence must be colored identically by f .
Thus g([S]2) ≡ 1, and S is a monochromatic subtree for f . �

It is not known whether or not SRT2
2 implies Σ0

2 − IND [2]. Similarly, it
is not known whether or not S3TT2

2 implies Σ0
2 − IND. Since S3TT2

2 is a Π1
2

sentence, Theorem 7 is not applicable. Thus, Theorem 14 is a candidate for
a proof of TT(1) that does not rely on a disguised use of Σ0

2 − IND.
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[8] Petr Hájek and Pavel Pudlák, Metamathematics of first-order arithmetic, Perspec-
tives in Mathematical Logic, Springer-Verlag, Berlin, 1998. Second printing.

[9] Neil Hindman, Finite sums from sequences within cells of a partition of N , J. Com-
binatorial Theory Ser. A 17 (1974), 1–11, DOI 10.1016/0097-3165(74)90023-5.

[10] Jeffry L. Hirst, Combinatorics in subsystems of second order arithmetic, Ph.D. The-
sis, The Pennsylvania State University, 1987.

[11] Timothy H. McNicholl. Private communication.

[12] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives
in Logic, Cambridge University Press, Cambridge, 2009.


