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Abstract. Matroids generalize the familiar notion of linear dependence
from linear algebra. Following a brief discussion of founding work in com-
putability and matroids, we use the techniques of reverse mathematics
to determine the logical strength of some basis theorems for matroids
and enumerated matroids. Next, using Weihrauch reducibility, we relate
the basis results to combinatorial choice principles and statements about
vector spaces. Finally, we formalize some of the Weihrauch reductions to
extract related reverse mathematics results. In particular, we show that
the existence of bases for vector spaces of bounded dimension is equiva-
lent to the induction scheme for Σ0

2 formulas.
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The study of computable and computably enumerable matroids links the
work in this paper to the theme of this volume. The following incomplete survey
establishes a framework for this connection and provides a few pointers into the
substantial literature on computability and matroids.

In a seminal paper on computable and c.e. vector spaces, Metakides and
Nerode [14] defined a vector space V∞, the ℵ0-dimensional vector space over a
countable computable field F consisting of ω-sequences of elements of F with
finite support, with point-wise operations. The lattice of c.e. subspaces of V∞
is denoted L(V∞). A vector space V over a computable field F is c.e. presented
if it has an effective enumeration of the vectors, partial recursive addition and
scalar multiplication operations, and a c.e. congruence relation ≡ such that the
quotient V/≡ is a vector space. Metakides and Nerode proved that a vector space
is c.e. presented if and only if it is computably isomorphic to V∞/W for some
W ∈ L(V∞).

Many proofs of results for L(V∞) rely on the structure of V∞, hampering
their adaptation to L(F∞), the lattice of c.e. algebraically closed subfields of
a sufficiently computable algebraically closed field F∞ with countably infinite
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transcendence degree. Matroids restrict interest to dependence properties com-
mon to both vector spaces and algebraic extensions, so proofs based on matroids
can often be adapted to both vector space and field settings.

In computability theoretic papers, matroids are often described in terms of
Steinitz systems. These are also called Steinitz closure systems [15] or Steinitz
exchange systems [16]. Downey [8] defines a Steinitz system as a set U and a
closure operator cl mapping subsets of U to subsets of U such that if A,B ⊂ U ,

(1) A ⊂ cl(A),
(2) A ⊂ B implies cl(A) ⊂ cl(B),
(3) cl(cl(A)) = cl(A),
(4) x ∈ cl(A) implies that, for some finite A′ ⊂ A, x ∈ cl(A′), and
(5) (exchange) x ∈ cl(A ∪ {y})− cl(A) implies y ∈ cl(A ∪ {x}).

As an intuitive example, we can think of U as a vector space and cl(A) as the
linear span of the vectors in the set A. The Steinitz system (U, cl) has computable
dependence if U is computable and there is a uniformly effective procedure that,
when applied to a, b1, . . . bn ∈ U , computes whether a ∈ cl({b1, . . . bn}).

A central goal in computable matroid research is to discover algebraic proper-
ties of matroids with significant computability theoretic consequences. For exam-
ple, the Steinitz system (U, cl) has the closure intersection property if whenever

• D is closed, that is, cl(D) = D,
• A is independent over D, that is, for every a ∈ A, a /∈ cl(D ∪A \ {a}),
• B is independent over D, and
• cl(A ∪D) ∩ cl(B ∪D) = cl(D),

then A ∪B is independent over D. The system is semiregular (called Downey’s
semiregularity by Nerode and Remmel [16]) if no finite dimensional closed set
is the union of two closed proper subsets. Downey established in his thesis [6]
(abstracted in [7]) that if (U, cl) is semiregular and has the closure intersection
property then the theory of L(U) is undecidable.

1 Reverse Mathematics

In his development of the theory of matroids, Whitney [18, Section 6] formulates
matroids in terms of a ground set of elements and a specification of every set
as being either dependent or independent. We define an enumerated matroid
(e-matroid) to consist of a set and an enumeration of its finite dependent sets.

Definition 1. A (nontrivial) e-matroid is a pair (M, e) consisting of a set M
and a function e : N→ [M ]<N satisfying:

(1) The empty set is independent.

(∀n)[e(n) 6= ∅]
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(2) Finite supersets of dependent sets are dependent.

(∀n)(∀Y ∈ [M ]<N)[e(n) ⊆ Y → ∃m(e(m) = Y )]

(3) If X is an independent set that is smaller than an independent set Y , then
Y contains an element that is independent of X.

(∀X,Y ∈ [M ]<N)( if |X| < |Y | and (∀n)[e(n) 6= X ∧ e(n) 6= Y ]

then (∃y ∈ Y )(∀n)[e(n) 6= X ∪ {y}])

An infinite set is independent if and only if each of its finite subsets is
independent. We assume e(0) is defined, so for every e-matroid, M 6= ∅ and
there is at least one finite dependent set.

Although dependence in this setting is not directly related to linear combi-
nations, it is still possible to formulate concepts of span and bases.

Definition 2. A subset B of an e-matroid (M, e) spans the e-matroid if adjoin-
ing any additional element to B produces a dependent set, that is,

(∀x ∈M)[x /∈ B → (∃n)(e(n) ⊆ B ∪ {x})].

A subset B ⊆ M is a basis for the e-matroid if B is independent (that is,
(∀n)[e(n) 6⊆ B]) and B spans M .

We can now state our first basis theorem. The analogous result showing the
equivalence of ACA0 and the existence of bases for vector spaces is included in
Theorem 4.3 of Friedman, Simpson, and Smith [9].

Theorem 3. (RCA0) The following are equivalent:

(1) ACA0.
(2) Every e-matroid has a basis.

Proof. To show that (1) implies (2), fix an e-matroid (M, e). Let m0,m1, . . . be
a non-repeating enumeration of M . Consider the function g : N→ [M ]<N defined
by g(0) = ∅ and for i > 0,

g(i) =

{
g(i− 1) if (∃n)[e(n) = g(i− 1) ∪ {mi−1}],
g(i− 1) ∪ {mi−1} otherwise.

By arithmetical comprehension, the union of the range of g exists; call this union
B. Straightforward arguments verify that B is a basis for M .

To prove the converse, by Lemma III.1.3 of Simpson [17], it suffices to use (2)
to prove the existence of the range of an arbitrary injection from N to N. Suppose
f : N → N is an injection. Let M = {(i, ε) : i ∈ N ∧ ε < 2} be the ground set
for an e-matroid. Let M0,M1, . . . be an enumeration of [M ]<N. Fix a bijective
pairing function mapping N × N onto N. Using the notation (j, k) for both the
pair and its integer code, define e((j, k)) = {(f(j), 0), (f(j), 1)} ∪Mk. Because
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(f(j), 0) ∈ e((j, k)), item (1) of the definition of an e-matroid holds. The inclu-
sion of Mk in e((j, k)) ensures that supersets of dependent sets are dependent,
satisfying item (2) of the definition. To verify item (3), suppose X and Y are
finite independent sets with |X| < |Y |. If there is a y ∈ X∩Y , then X∪{y} = X
so ∀n(e(n) 6= X∪{y}). Thus we need only consider the case where X∩Y = ∅. We
hypothesized that |Y | > |X|, so there must be a y = (z, ε) ∈ Y such that for all
ε′, (z, ε′) /∈ X. Suppose by way of contradiction that e(n) = X ∪{y} for some n.
Then, for some j, we have {(f(j), 0), (f(j), 1)} ⊂ X∪{y}. By the choice of y, we
know f(j) 6= z, so {(f(j), 0), (f(j), 1)} ⊂ X, contradicting (∀n)[e(n) 6= X]. Thus
item (3) of the definition holds, and we have shown that (M, e) is an e-matroid.

Finally, we claim that if B is a basis for M , then k is in the range of f if and
only if (k, 0) /∈ B or (k, 1) /∈ B. First note that if k = f(j) then, assuming 0 is
the code for ∅, we have e((j, 0)) = {(k, 0), (k, 1)}. B is a basis, so e((j, 0)) 6⊂ B,
and thus (k, 0) /∈ B or (k, 1) /∈ B. Conversely, if for example (k, 0) /∈ B, then
(∃n)[e(n) ⊆ B∪{(k, 0)}]. Because e(n) is dependent and B is independent, both
(k, 1) ∈ e(n) and for all f(j) 6= k, at least one of (f(j), 0) and (f(j), 1) is not in
e(n). By the definition of e, e(n) must contain both (a, 0) and (a, 1) for some a in
the range of f , so k is in the range of f . A similar argument holds if (k, 1) /∈ B,
completing the proof of our claim. Because k is in the range of f if and only if
(k, 0) /∈ B or (k, 1) /∈ B, recursive comprehension suffices to prove the existence
of the range of f , completing the reversal.

Our next result shows that if we add a hypothesis bounding the dimension
of the matroid, the principle asserting the existence of a basis becomes weaker.
The result also illustrates the interrelatedness of matroids and graph theory. We
use the concept of rank to establish the dimensional bound.

Definition 4. We say the rank of an e-matroid (M, e) is no more than n if
every subset of M of size n is dependent, that is, in the range of e.

Theorem 5. (RCA0) The following are equivalent:

(1) For every n, every e-matroid of rank no more than n has a basis.
(2) For every n, if G = (V,E) is a countable graph and every collection of n

vertices contains at least one path connected pair, then G can be decomposed
into its connected components.

(3) IΣ0
2 , the induction scheme for Σ0

2 formulas with set parameters.

Proof. Proofs that (2) implies (3) appear as Theorem 4.5 of Hirst [13] and also
as Theorem 3.2 of Gura, Hirst, and Mummert [11]. Here, we will prove that (3)
implies (1) and (1) implies (2).

To see that (3) implies (1), fix n and let (M, e) be an e-matroid of rank no
more than n. Let ψ(j) formalize the existence of an independent set of size n−j.
If we use Xt to denote the finite subset of N encoded by t, then ψ(j) can be
written as (∃t)[|Xt| = n−j∧∀k(e(k) 6= Xt)]. Note that ψ(j) is a Σ0

2 formula, and
the empty set witnesses ψ(n). By the Σ0

2 least element principle (which is easily
deduced from the bounded Σ0

2 comprehension, and is therefore a consequence
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of (3) by Exercise II.3.13 of Simpson [17]), there is a least j0 such that ψ(j0). Let
Xt0 witness ψ(j0). We claim that Xt0 is a basis. The range of e is closed under
supersets, so no subset of Xt0 appears in the range of e. By the minimality of
j0, if x /∈ Xt0 , then Xt0 ∪ {x} is dependent, so for some n, e(n) = Xt0 ∪ {x}.
Thus Xt0 spans M .

To show that (1) implies (2), let G(V,E) be a graph in which every collection
of n vertices contains at least one path connected pair. The independent sets of
our e-matroid will consist of subsets of V with no path connected pairs. If G
contains no edges, the identity function on V decomposes G into connected
components. Suppose G has an edge connecting the vertices v0 and v1. Let
(Vi)i∈N be an enumeration of the finite subsets of V such that every subset
appears infinitely often. Define e(j) by e(j) = Vj if there is some t < j that
encodes a path between two vertices of Vj , and e(j) = {v0, v1} otherwise. It is
easy to verify that (V, e) satisfies the first two clauses of the definition of an
e-matroid. For the third clause, suppose X and Y are finite sets of vertices such
that no pair in either set is path connected, and that |X| < |Y |. Suppose by way
of contradiction that every vertex in Y is path connected to some vertex in X.
RCA0 can prove the existence of the function mapping each y ∈ Y to some x ∈ X
to which it is path connected, and because |X| < |Y |, f must map two elements
of Y to the same x. These two vertices of Y are path connected, yielding the
desired contradiction. Thus (V, e) is a matroid. By (1), (V, e) has a basis, which
is a maximal set of disconnected vertices in G. The function which is the identity
on this basis and maps very other vertex of G to the element of the basis to which
it is path connected is a decomposition of G into connected components. This
decomposition is computable from the basis, so RCA0 proves (1) implies (2).

2 Why e-Matroids?

We can define a matroid as a pair (M,D) whereD is the set of all finite dependent
subsets of M . In this case, D satisfies the set-based analogs of the three items in
the definition of e-matroid. To express this definition within RCA0, we represent
each finite subset of M via its characteristic index. Using the set-based analog
of the definition of basis, we can state and prove the following result.

Theorem 6. (RCA0) Every matroid has a basis.

Proof. Let (M,D) be a matroid and let m1,m2, . . . be a non-repeating enumera-
tion of M . Define a nested sequence of finite independent sets 〈Ij〉j∈N as follows.
Let I0 = ∅. For j > 0, let Ij = Ij−1 if Ij−1∪{mj} ∈ D, and let Ij = Ij−1∪{mj}
otherwise. Define the basis B by mj ∈ B if and only if mj ∈ Ij . To see that B
is independent, suppose X is a finite dependent set. Let mj be the element of
largest index in X. If X \ {mj} ⊂ Ij−1, then mj /∈ Ij , so mj /∈ B and X 6⊂ B.
If X \ {mj} 6⊂ Ij−1 then X 6⊂ Ij , so X 6⊂ B. Summarizing, B has no finite de-
pendent subsets, so B is independent. To see that B spans, fix mj ∈M . Either
mj ∈ B, or both B ⊃ Ij−1 /∈ D and Ij−1 ∪ {mj} ∈ D. In either case, mj is in
the span of B.
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The preceding result can be viewed as a reverse mathematical reframing of
the statement: Every computably presented matroid has a computable basis. This
principle was stated by Crossley and Remmel [5, §5, Lemma 1], who describe it
as common knowledge and implicit in the work of Metakides and Nerode [14].
The representations of the matroid by a computable dependence relationship or
by a dependence algorithm for a Steinitz system with computable dependence
are equivalent. The next theorem is a reverse mathematics analog of the fact
that not every c.e. presented matroid is computably isomorphic to a computably
presented matroid.

Theorem 7. (RCA0) The following are equivalent:

(1) ACA0.
(2) Every e-matroid is isomorphic to a matroid. That is, if (M, e) is an e-

matroid, then there is a matroid (N,D) and a bijection h : M → N such
that for all finite sets X ⊂M , there is an n such that e(n) = X if and only
if {h(x) : x ∈ X} ∈ D.

Proof. To see that (1) implies (2), suppose (M, e) is an e-matroid. The range of e
is arithmetically definable using e as a parameter, so ACA0 proves the existence
of the range as a set D. Then (M,D) is a matroid and the identity is the desired
isomorphism.

To prove the converse, we capitalize on the construction from the proof of
the reversal of Theorem 3. As in that proof, fix an injection f and construct the
associated e-matroid (M, e). Apply (2) above to find a matroid (N,D) and an
isomorphism h : M → N . By the construction of (M, e), for each k ∈ N, k is in
the range of f if and only if {(k, 0), (k, 1)} is in the range of e, which holds if
and only if {h((k, 0)), h((k, 1))} ∈ D. Thus, the range of f is computable from
D and h, completing the proof of the reversal.

In terms of Turing degrees, the previous theorem only shows that each
c.e. presented matroid is computable from 0′. The next corollary shows that,
if a c.e presented matroid is isomorphic to a computable matroid, the isomor-
phism may necessarily be noncomputable.

Corollary 8. There is a c.e. presented matroid M , which is isomorphic to a
computable matroid, such that if ϕ is any isomorphism between M and a com-
putable matroid then 0′ is Turing computable from ϕ.

Proof. Let f be any computable injection with a range that computes 0′. Use
the construction of (M, e) from the proof of the reversal of Theorem 3. This
is the desired c.e. presented matroid. The proof of Theorem 7 shows that any
isomorphism between (M, e) and a computable matroid computes the range of
f and consequently computes 0′. Since the range of f is both infinite and co-
infinite, (M, e) is isomorphic to the computable matroid with ground set N and
D consisting of all finite supersets of sets of the form {3k, 3k + 1} where k ∈ N.

A recent paper of Harrison-Trainor, Melnikov, and Montalbán [12] presents
more results and applications for c.e. presented matroids. The pregeometries of
their section 2 are Steinitz systems.
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3 Weihrauch Reducibility

In Theorem 6, we used reverse mathematics to study the problem of finding a ba-
sis for an e-matroid. In this section, we study the same problem using Weihrauch
reducibility. For additional information on Weihrauch reducibility, see Brattka
and Gherardi [2] and Dorais, Dzhafarov, Hirst, Mileti, and Shafer [4]. The follow-
ing simplified definition of Weihrauch problems will be sufficient for our purposes.

Definition 9. A Weihrauch problem is a subset of NN × NN, NN × N, N × NN,
or N × N. For a Weihrauch problem P , the “problem” is: given an “instance”
I ∈ dom(P ), produce a “solution” S with (I, S) ∈ P .

A Weihrauch problem P is Weihrauch reducible to a Weihrauch problem Q,
written P ≤W Q, if there are computable functions or functionals Φ, Ψ such that,
for all S ∈ dom(P ), Φ(S) ∈ dom(Q), and for all R such that (Φ(S), R) ∈ Q,
we have (S, Ψ(R,S)) ∈ P . If this can be done with a functional Ψ that does
not depend on S, we say that P is strongly Weihrauch reducible to Q, written
P ≤sW Q. The relations ≤W and ≤sW are reflexive and transitive, and thus they
induce equivalence relations, which are denoted ≡W and ≡sW, respectively.

The parallelization of a Weihrauch problem P is the problem

P̂ = {(f, g) : (f(n), g(n)) ∈ P for all n ∈ N}

whose instances are sequences of instances of P and whose solutions are se-
quences of solutions corresponding to those instances.

Definition 10. We define the following Weihrauch principles. The first two are
well known in the literature [1].

– CN: closed choice for subsets of N.

CN = {(f, n) : f ∈ NN, n 6∈ range(f)}

– ĈN: the parallelization of CN.

ĈN = {(f, g) : ((f)n, g(n)) ∈ CN for all n ∈ N }

– GAC: the graph antichain problem. For a countable graph G, an antichain
is a set of vertices no two of which are connected by a path in G. Letting
Max(G) be the set of maximal antichains of G, we have

GAC = {(G,A) : G is a countable graph, A ∈ Max(G)}

– EMB: the e-matroid basis problem.

EMB = {(M,B) : M is a countable e-matroid, B is a basis for M}

– VSB: the vector space basis problem, for countable vector spaces over count-
able fields, coded as in Definition III.4.1 of Simpson [17].

VSB = {(V,B) : V is a countable vector space and B is a basis for V }
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For each n > 1 in N, we define the following restricted principles:

– GACn: the restriction to GAC to graphs with n connected components.
– EMBn: the restriction of EMB to e-matroids with a basis of size n.
– VSBn: the restriction of VSB to vector spaces with dimension n.

In previous work [11], we considered another well known Weihrauch problem,
LPO.

LPO = {(f, n) : f ∈ [N]<N and f(n) = 0↔ (∃m)[f(m) = 0]}

The following lemma shows that the parallelization of LPO is strict Weihrauch
equivalent to the parallelization of CN. This equivalence is implicit in work of
Brattka and Gherardi [2, 3], but the reductions obtained by combining their
results are very indirect. The next lemma provides a pair of direct reductions.

Lemma 11. ĈN is strongly Weihrauch equivalent to L̂PO.

Proof. First, suppose we are given an instance f of CN. The function f enumer-
ates the complement of some nonempty set. We form a sequence (pn) of instances
of LPO such that pn has 0 in its range if and only if n is in the range of f . Then,

given solutions to the instance (pn)n∈N of L̂PO, we can search effectively for the
least n such that pn does not have 0 in its range, which will be the least n not in
the range of f . Thus, by effective dovetailing, ĈN is strict Weihrauch reducible

to L̂PO.
For the converse, we first reduce LPO to CN, as follows. Given an instance p

of LPO, we enumerate in stages the complement of a nonempty set A = A(p).
If p(0) > 0, we enumerate 1 into the complement of A. Then if p(1) > 0 we
enumerate 2 into the complement of A. We continue in this way. If we ever
find that p(n) = 0 for some n, we enumerate 0 into the complement of A, after
which we do not enumerate anything else into the complement, so we will have
A = {n+ 1, n+ 2, . . .}. On the other hand, if 0 is not in the range of p, then we
continue enumerating elements into the complement of A, so that we will obtain
A = {0}. Hence, if we view A as an instance of CN, we can determine whether
(∃m)[p(m) = 0] by looking at the value of any solution. Thus LPO is strict
Weihrauch reducible to CN, and so the parallelization of LPO is strict Weihrauch
reducible to the parallelization of CN.

Theorem 12. The following strong Weihrauch equivalences hold:

GAC ≡sW EMB ≡sW VSB ≡sW ĈN.

Proof. Gura, Hirst, and Mummert [11] proved that GAC ≡sW ĈN. Therefore, it
is sufficient to establish the following four reductions:

GAC ≤sW EMB ≤sW ĈN, ĈN ≤sW VSB ≤sW EMB.

Three of these reductions are straightforward. First, to show that VSB ≤sW EMB,
modify the construction used to prove (1) implies (2) in Theorem 5. Given a
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vector space with vector set V and zero vector 0V , let (Vi)i∈N be an enumeration
of all the finite subsets of V in which each subset appears infinitely often. Define
e : N → [V ]<N by setting e(j) = Vj = {v0, . . . , vk} if there is a sequence of field
elements {a0, . . . , ak} with canonical code less than j such that

∑
i≤k aivi = 0,

and set ej = {0V } otherwise. Because e enumerates the finite dependent subsets
of V , it is easy to verify that (V, e) is a matroid and any basis for the matroid is
a basis for the vector space.

Second, to show that GAC ≤sW EMB, let G = (V,E) be a graph. We wish to
ensure that G has at least one edge. To this end, choose a vertex v1 ∈ V and add
a new vertex v0 to V and a new edge (v0, v1) to E, yielding a graph G′ = (V ′, E′).
Construct a matroid (V ′, e) as in the proof that (1) implies (2) in Theorem 5.
(Note that in that argument, the bound on the number of components is used
only to bound the rank of the matroid.) As in that proof, any basis for (V ′, e) is a
maximal set of disconnected vertices of G′. If v0 is in the basis, it can be replaced
by v1 to form a new basis which is a maximal set of disconnected vertices of G.

Third, to show that EMB ≤sW ĈN, let (M, e) be a countable e-matroid.
Construct an enumeration e′ of the finite sets in Range(e) ∪ {F | F 6⊆ M}.
Then M ′ = (N, e′) is an e-matroid with domain N which has exactly the same
independent sets and exactly the same bases as M . Fix an enumeration (Fn)n∈N
of [N]<N. Define an instance (fn)n∈N of ĈN by

fn(j) =

{
j + 1 if (∀t < j)[eM ′(t) 6= Fn],

0 otherwise.

Note that Fn is independent if and only if Range(fn) = N \ {0}. Also, if Fn is

dependent, then 0 ∈ Range(fn). Thus, if g is a solution to this instance of ĈN,
then for every n ∈ N, Fn is independent if and only if g(n) = 0. To simplify
notation, if F is finite, we can let n be the smallest value such that Fn = F , and
write g(F ) = g(n). We define the basis in stages. Let B0 = {0} if g({0}) = 0 and
B0 = ∅ otherwise. If Bj is defined, let Bj+1 = Bj ∪{j+ 1} if g(Bj ∪{j+ 1}) = 0
and Bj+1 = Bj otherwise. Then B = {j | j ∈ Bj} is a basis for M ′ and thus
also for M .

It remains to show that ĈN ≤sW VSB. We adapt the construction presented
by Simpson [17, Theorem III.4.3] showing that the principle “every countable
vector space over Q has a basis” is equivalent to ACA0 in the sense of reverse
mathematics. The proof presented by Simpson shows, more specifically, that
given an injective function f : N → N we may uniformly compute a Q-vector
space Vf such that the range of f is uniformly computable from any basis of Vf .
This shows, in particular, that CN ≤sW VSB.

To complete the proof, it is sufficient for us to verify that V̂SB ≤sW VSB,

because then we have ĈN ≤sW V̂SB ≤sW VSB. The proof uses an effective direct
sum construction. Given a sequence (Vn)n∈N of countable vector spaces, we may
assume without loss of generality that their underlying sets of vectors are pair-
wise disjoint. We may then form a countable vector space V whose elements are
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finite formal Q-linear combinations of the form

a1u1 + · · ·+ amum

where ai ∈ Q and ui ∈ Vi for i ≤ m. The scalar multiplication on V is the
obvious one, and the vector addition is so that∑

i≤m

aiui

 +

∑
i≤n

bivi

 =
∑

i≤maxm,n

(aiui + bivi)

where each addition aiui+bivi is carried out in Vi, and terms that did not appear
in the left are treated vacuously as zero vectors. Then V is a countable vector
space that is uniformly computable from the sequence (Vn)n∈N. Moreover, if B
is a basis of V then B∩Vi is a basis of Vi for each i ∈ N. To see this, note that on
one hand B∩Vi must span Vi for each i, and on the other hand any dependency
of the set B ∩ Vi within Vi would induce a dependency of B within V .

We next consider the restricted versions of two principles from Theorem 12.

Theorem 13. For n ≥ 2, the following equivalences hold:

GACn ≡sW EMBn ≡sW CN.

Proof. Let n ≥ 2 be fixed for the remainder of this proof. Gura, Hirst, and
Mummert [11, Theorem 6.6] proved that GACn ≡sW CN. Therefore, it is sufficient
to establish the reductions GACn ≤sW EMBn and EMBn ≤sW CN.

The reduction GACn ≤sW EMBn follows from the proof of Theorem 12, be-
cause the construction there produces an e-matroid whose dimension is the same
as the number of components of the graph.

To show that EMBn ≤sW CN, let (M, e) be an e-matroid with a basis of size n.
As in the proof of Theorem 12, construct an enumeration e′ of the finite sets
in Range(e) ∪ {F | F 6⊆ M}, so that M ′ = (N, e′) is an e-matroid with domain
N and with exactly the same bases as (M, e). Let (Fi)i∈N be an enumeration of
[N]n in which each set appears infinitely often. Let (Gi)i∈N be an enumeration
of [N]n in which each set appears exactly once, and such that G0 = F0.

We define an instance f of CN inductively along with an auxiliary sequence
(mj)j∈N. At stage 0, let m0 = 0 and f(0) = 1. At stage j + 1, suppose mj and
f(j) have been defined. If e′(j) = Fmj

, set f(j + 1) = mj , let k be the smallest
integer such that (∀t ≤ j)[e′(t) 6= Gk] and set

mj+1 = (µs)[Gk = Fs ∧ (∀t ≤ j)(s > f(t))].

At stage j + 1, if e′(j) 6= Fmj , set f(j + 1) = min(N \ ({f(t) | t ≤ j} ∪ {mj}))
and let mj+1 = mj .

The range of f will include all integers except one, namely some m such that
Fm = Gk for the least k for which Gk is a basis for M . Thus Fm will be a basis
for M , as desired.
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The next lemma, which is well known, extends the list of principles in The-
orem 13 slightly, simplifying the proof of the next theorem.

Lemma 14. Let Cu
N denote the restriction of CN to functions for which the com-

plement of the range consists of a unique natural number. Then Cu
N ≡sW CN.

Proof. Because Cu
N restricts CN to a smaller class of inputs, Cu

N ≤sW CN. To prove
CN ≤sW Cu

N, suppose f : N → N is not surjective. In the following construction,
we will conflate the pair (i, j) with its integer code via a fixed bijection between
N and N×N. Define g : N→ N by the following moving marker construction. Let
m0 = (0, 0) be the initial marker. Suppose mk = (m0

k,m
1
k) has been defined. If

f(k) 6= m0
k, set mk+1 = mk and set g(k) to the least code for a pair not included

in {g(j) : j < k}. If f(k) = m0
k, define a pair (y0, t0) so that

y0 = (µ y ≤ k + 1)(∀j ≤ k)[f(j) 6= y],

t0 = (µ t)(∀j < k)[g(j) 6= (y0, t)],

and then set mk+1 = (y0, t0) and g(k) = mk.
Intuitively, if y is the smallest natural number not in the range of f , then at

some stage in the construction the marker is set to (y, n) for some n, and does
not move after that point. The code (y, n) is not in the range of g, but every
other code and consequently every other natural number is in the range of g.
Thus g satisfies the input requirements for Cu

N, and the process yields (y, n) as
an output. The number y (retrievable by a projection function) is a solution to
CN for input f .

The following theorem adds the fixed dimension vector space basis problem
to the list of equivalent problems of Theorem 13

Theorem 15. For n ≥ 2, VSBn ≡sW CN.

Proof. By Theorem 13, EMBn ≤sW CN. In the proof of Theorem 12, the argument
showing VSB ≤sW EMB preserves the dimension of input vector space, and so
shows VSBn ≤sW EMBn. By transitivity, VSBn ≤sW CN.

Next we will show that Cu
N ≤sW VSB2. Our proof uses ideas and notation

from the proof of Theorem III.4.2 of Simpson [17]. Fix f : N→ N with the range
of f including all of N except for one value. Let V0 be the set of all formal sums∑

i∈I qixi with I finite and 0 6= qi ∈ Q. We can identify formal sums with their
sequence codes, yielding a well-ordering on V0. Without loss of generality, we
may assume that xi is minimal in this ordering among all vectors with a nonzero
coefficient on xi. As in Simpson’s proof, let x′m = x2f(m) + (m+ 1)x2f(m)+1 and
X ′ = {x′m : m ∈ N}. Let U0 denote the subspace consisting of the linear span of
X ′. Note that

∑
i∈I qixi ∈ U0 if and only if

(∀n) [(q2n 6= 0→ f(q2n+1/q2n − 1) = n) ∧ (q2n = 0→ q2n+1 = 0)] ,

so U0 is computable from f . Let V1 be V0/U0, where a vector v is in V1 if and
only if it is the element of {v − u : u ∈ U0} which is least in the well ordering
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on V0. Only finitely many sequence codes are less than the code for v, so V1 is
computable.

By our choice of ordering and the construction of U0, for every i ∈ N, x2i ∈ V1.
Let U1 be the linear span of {x2i : i ∈ N} in V1. Then U1 is a vector subspace
of V1 computable from f , and we may construct the quotient space V = V1/U1,
using minimal representatives as before. For any j ∈ N,

x0 = x2f(j)+1 − (− 1

j + 1
x2f(j) − x0)− 1

j + 1
(x2f(j) + (j + 1)x2f(j)+1).

The vector − 1
j+1x2f(j) − x0 is in U1 and 1

j+1 (x2f(j) + (j + 1)x2f(j)+1) is in U0,
so x0 and x2f(j)+1 correspond to the same vector in V . The range of f excludes
only one element, so the dimension of V is 2. Let {v1, v2} be a basis for V . Let
P be the finite collection of odd indices in the formal sums for v1 and v2, and let
R = {m : 2m+ 1 ∈ P}. Exactly one m in R does not appear in the range of f .
Thus, for exactly one m in R, {x0, x2m+1} is linearly independent. Sequentially
enumerate linear combinations of the form q0x0 + q1x2m+1, ejecting values from
R corresponding to linear combinations that equal 0 in V . The last value left in
R is the sole natural number that is not in the range of f . Thus Cu

N ≤sW VSB2.
By Lemma 14, CN ≤sW VSB2.

To prove CN ≤sW VSBn for n > 2, add n− 1 dummy vectors to the the basis
of V0 in the preceding argument.

The reduction of EMBn to CN in the proof of Theorem 13 relies heavily on
knowing the precise dimensions (in the appropriate sense) of the objects being
studied. This suggests a variation in which we only place an upper bound on their
dimensions. We begin with definitions of bounded versions of some Weihrauch
principles.

Definition 16. We define the following Weihrauch principles. In the first three
principles, the output can be viewed either as a canonical code for a finite set, or
equivalently as a set together with the integer corresponding to its cardinality.

– EMB<ω: the bounded e-matroid basis problem.

EMB<ω = {(n,M,B) : n ∈ N, M is an e-matroid, rank(M) ≤ n,
and B is a basis for M}

– GAC<ω: The bounded graph antichain problem. Letting Max(G) be the set
of maximal antichains of G, we have

GAC<ω = {(n,G,A) : n ∈ N, G is a graph,

each set of n vertices has a path connected pair,

and A ∈ Max(G)}

– C⊂max: Picking a maximal element (relative to the containment partial or-
dering) in the complement of an enumeration of finite nonempty sets whose
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range includes all sets larger than some bound.

C⊂max = {(n, f,X) : n ∈ N, f : N→ [N]<N
6=∅ , X ∈ [N]<N,

range(f) includes all sets of cardinality ≥ n,
X /∈ range(f), and

(∀Y ∈ [N]<N)[Y ) X → Y ∈ range(f)]}

– C#
max: Picking an element of maximal cardinality in the complement of an

enumeration of finite nonempty sets whose range includes all sets larger than
some bound.

C#
max = {(n, f,X) : n ∈ N, f : N→ [N]<N

6=∅ , X ∈ [N]<N,

range(f) includes all sets of cardinality ≥ n,
X /∈ range(f), and

(∀Y ∈ [N]<N)[|Y | > |X| → Y ∈ range(f)]}

Theorem 17. The following strong Weihrauch equivalences hold:

EMB<ω ≡sW GAC<ω ≡sW C⊂max ≡sW C#
max.

Proof. We will prove each of the following reductions, proceeding from right to
left:

C⊂max ≤sW C#
max ≤sW GAC<ω ≤sW EMB<ω ≤sW C⊂max.

To prove EMB<ω ≤sW C⊂max, suppose (M, e) is an e-matroid such that every
subset of M of size at least n is in the range of e. Let {Xj : j ∈ N} be an enu-
meration of [N]<N and let (i, j) denote the output of a bijective pairing function.
Note that every m ∈ N has a unique representation of the form 2(i, j) + ε where
i, j ∈ N and ε ∈ {0, 1}. Define f : N→ [N]<N by

f(2(i, j) + ε) =

{
Xj if ε = 0 ∧ i /∈M ∧ i ∈ Xj ,

e((i, j)) otherwise.

The range of f consists of the range of e plus all finite sets containing any
elements of the complement of M . Apply C⊂max to f to obtain a finite set B ⊆ N in
the complement of the range of f that is maximal with respect to the containment
partial ordering. The range of f includes all finite sets containing elements of the
complement of M , so B ⊆M . Furthermore, the range of f includes the range of
e, so B is independent in (M, e). By maximality, B spans (M, e), so B is a basis
for (M, e).

To prove GAC<ω ≤sW EMB<ω, emulate the reduction of GAC to EMB from
the proof of Theorem 12. Because G has at most n connected components, every
set of n+ 1 elements in the related matroid is dependent and so appears in the
range of the enumeration.

To prove C#
max ≤sW GAC<ω, suppose f : N → [N]<N

6=∅ and the range of f
includes all finite subsets of cardinality at least n. For each b with 1 ≤ b < n,
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let gb : N→ [N]<N be an enumeration of all subsets of N of cardinality exactly b.
We will construct a graph G consisting of n− 1 subgraphs each with one or two
connected components. The vertices of G are {ubj , vbj : 1 ≤ b < n ∧ j ∈ N}. For

each b with 1 ≤ b < n and each j ∈ N, add the edge (ubj , u
b
j+1) to the edge set

E of G. For each b with 1 ≤ b < n, define kb0 = 0. Suppose kbj is defined. If

(∃t ≤ j)[f(t) = gb(k
b
j)], add (vbj , u

b
j) to E and set kbj+1 = kbj + 1. Otherwise, if

(∀t ≤ j)[f(t) 6= gb(k
b
j)], add (vbj , v

b
j+1) to E and set kbj+1 = kbj . Note that the

graph G is uniformly computable from f .
Apply GAC<ω to find a maximal (finite) antichain D in G. Let b0 be the

largest number less than n such that D contains two vertices with superscript b0.
(If no such b0 exists, ∅ is the largest set in the complement of the range of f .) At
least one of these vertices must be vb0j for some j. Let j0 be the largest value such

that vb0j0 ∈ D. Then gb0(kb0j0 ) is a set of maximal cardinality in the complement
of the range of f .

To conclude the proof, we need only show that C⊂max ≤sW C#
max. Any f and

n satisfying the hypotheses of C⊂max also satisfy those of C#
max. Any subset in the

complement of the range of f that is maximal in cardinality is also maximal with
respect to the containment partial ordering, so the identity functionals witness
the desired reduction.

We close our discussion of Weihrauch reducibility with the following theorem
that adds VSB<ω to the equivalences of Theorem 17. Here VSB<ω is the problem
which, given an input of n ∈ N and a vector space in which every set of n vectors
is linearly dependent, returns a basis for the vector space.

Theorem 18. VSB<ω ≡sW C⊂max.

Proof. By Theorem 17, EMB<ω ≤sW C⊂max. The proof of VSB ≤sW EMB in The-
orem 12 preserves dimension, so that argument also witnesses that VSB<ω ≤sW

EMB<ω. By transitivity, VSB<ω ≤sW C⊂max.
Next we will adapt arguments from the proofs of Lemma 14 and Theorem 15

to show that C#
max ≤sW VSB<ω. Fix n and f : N → [N]<N such that the range

of f includes all sets of cardinality ≥ n.For each j < n, let hj be a bijective
enumeration of {X : X ⊂ N ∧ j ≤ |X| < n} × N. Emulating the moving marker
construction of Lemma 14, for each j < n define gj such that either the range
of f includes all sets of cardinality k for j ≤ k < n and gj is surjective or
the unique value not in the range of gj is some m such that hj(m) = (X0,m0)
where j ≤ |X0| < n and X0 is in the complement of the range of f . (For use
in the proof of Theorem 19, note that the convergence of the moving marker
construction can be formally proved using the collection principle BΣ0

1 , which is
provable in RCA0.)

Now we carry out an n-fold analog of the vector space construction in the
proof of Theorem 15. The goal of the construction is to form a space V as a
direct sum of subspaces Wi, i < n, such that if j0 is the largest size of a set
omitted from the range of f , then the dimension of Wi is 1 for i > j0 and the
dimension is 2 for i ≤ j0. This will ensure that the dimension of V is finite, and
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moreover will allow us to compute the value of j0 if we know the exact dimension
of V .

Let V0 be the set of formal sums
∑

(i,k)∈Ik×[0,n) q(i,k)x(i,k) where, for each

k < n, each Ik is finite and 0 6= q(i,k) ∈ Q. Identifying hj(m) = (X0,m0)
with the integer code for the pair, for each k < n and each m, let x′(m,k) =

x(2hk(m),k) + (m + 1)x(2hk(m)+1,k) and X ′ = {x′(m,k) : m ∈ N ∧ k < n}. Let U0

be the linear span of X ′ and set V1 = V0/U0. Let U1 be the linear span in V1 of
{x(2m,k) : m ∈ N ∧ k < n} and let V = V1/U1. Then V has a two dimensional
subspace corresponding to each j < n such that the range of f omits a set of
cardinality k with j ≤ k < n, and a one dimensional subspace corresponding to
each j < n such that f maps N onto the sets of cardinality k with j ≤ k < n.
Thus the dimension of V is between n and 2n, and any set of 2n+ 1 vectors is
linearly dependent.

(For use in the proof of Theorem 19, note that the claim that any collection
of 2n + 1 vectors of V is linearly dependent can be proved in RCA0 as follows.
Fix a set of 2n+ 1 nonzero vectors, S = {u0, . . . , u2n}. Let B0 be the finite set
of those vectors of the form x(i,k) that appear in the sums representing each ui.
Because S is finite, Σ0

1 induction suffices to find the smallest subset of B0 that
spans S. Call this set B1. By minimality, B1 is linearly independent. For each
k < n, the function gk omits at most one value, so B1 contains at most two
vectors of the form x(i,k). Thus |B1| ≤ 2n. Let B1 = {v0, . . . , vj} where j < 2n.
The vectors of B1 span S, so u0 =

∑
i≤j civi, with some ci0 6= 0. Solving for vi0 ,

we see that vi0 is in the span of B2 = {u0} ∪ B1 \ {vi0}. Thus B2 is a linearly
independent set spanning S. Iterating this process by primitive recursion, we
eventually find a um ∈ S which is a linear combination of {ui : i < m}. Thus S
is linearly dependent.)

Apply VSB<ω to find a basis B for V . Then k = |B|−n−1 is the cardinality
of the largest set omitted from the range of f . Let P be the finite collection
of odd numbers m such that (m, k) appears as an index in a formal sum for
an element of B. Let R = {m | 2m + 1 ∈ P}. Exactly one m in R does not
appear in the range of gk. Thus for exactly one m in R, {x(0,k), x(2m+1,k)}
is linearly independent. Sequentially examine linear combinations of the form
q0x(0,k) + q1x(2m+1,k), ejecting values from R corresponding to vectors equal to
0 in V , until only one is left. Viewed as a code for a pair, the first component of
that value is a code for a set of maximum cardinality in the complement of the
range of f . Thus C#

max ≤sW VSB<ω. By Theorem 17, C⊂max ≤sW VSB<ω.

4 Reducibility and Reverse Mathematics

We conclude by extracting a final reverse mathematics result from the proofs of
Theorem 17 and Theorem 18, extending the list of equivalences in Theorem 5.

Theorem 19. (RCA0) The following are equivalent:

(1) IΣ0
2 , the induction scheme for Σ0

2 formulas with set parameters.
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(2) Let V be a countable vector space such that for some n, every subset of n
vectors is linearly dependent. Then V has a basis.

(3) A formalized version of C#
max. Suppose f : N → [N]<N

6=∅ and there is an n

such that for all X ∈ [N]<N, [|X| ≥ n → ∃t(f(t) = X)]. Then there is an
X ∈ [N]<N such that (∀t)[f(t) 6= X and for all Y ∈ [N]<N, [|X| < |Y | →
∃t(f(t) = Y )].

(4) A formalized version of C⊂max. Suppose f : N → [N]<N
6=∅ and there is an n

such that for all X ∈ [N]<N, (|X| ≥ n → ∃t(f(t) = X)). Then there is an
X ∈ [N]<N such that (∀t)[f(t) 6= X] and for all Y ∈ [N]<N, [X ( Y →
∃t(f(t) = Y )].

Proof. First, we use (1) to prove (2). If V is a vector space and every set of n
vectors is linearly dependent, the construction from the proof of Theorem 12 can
be formalized to yield an e-matroid of rank no more than n. By Theorem 5, IΣ0

2

implies that this matroid has a basis which is also a basis of V .
To show that (2) implies (3), formalize the argument form the proof of The-

orem 18 showing that C#
max ≤sW VSB<ω, using the parenthetical comments. As

noted, the convergence of the moving marker construction is provable in RCA0,
as is the claim that every set of 2n+ 1 vectors is linearly dependent.

The proof that (3) implies (4) follows immediately from the fact that any set
that is maximal in the sense of (3) is automatically maximal in the sense of (4).

The proof that EMB<ω ≤sW C⊂max from Theorem 17 can be formalized in
RCA0 to show that (4) implies item (1) of Theorem 5. By Theorem 5, this
implies IΣ0

2 , completing the proof.
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