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Abstract. Suprema of well orderings appear in two forms. The first is the supre-

mum of a bounded subset of elements of a well ordering. The second is the supremum

of a collection of well orderings. This article explores the reverse mathematics of each

of these forms and their applications to ordinal arithmetic.

Using suitable coding, the language of second order arithmetic can express
a wide variety of statements pertaining to countable well orderings and the
functions on and between them. Once formalized, the logical strength of these
statements can be analyzed using the tools of reverse mathematics. A survey
of results of this sort appears in this volume [4].

In this article, we will use lower-case greek letters to denote countable well
orderings. We will denote the least element of any well ordering by 0, and use
1 to denote the next smallest element. Often, we also use k ∈ N to denote a
k-element well ordering, and ω for the natural numbers with their usual order-
ing. The operator + is treated as a concatenation operation on orderings. As a
consequence of these notational conventions, the theorems presented here bear
a strong resemblance to set theoretic ordinal arithmetic. However, here α rep-
resents some countable well ordering, not an ordinal satisfying the traditional
set theoretic definition.

Suppose that α and β are countable well orderings. If there is an order
preserving bijection between α and an initial segment of β, we say that α
is strongly less than or equal to β and write α ≤s β. We write α ≡s β if
α ≤s β and β ≤s α. Similarly, α ≤w β denotes weak comparability, asserting
the existence of an order preserving injection of α into β. One of the earliest
results of reverse mathematics is Friedman’s theorem showing the equivalence
of ATR0 to the assertion that any two countable well orderings are strongly
comparable [2]. Proofs can be found in [3] and [9].

In the next section, we explore suprema within well orderings and their con-
nection to various ways of defining well orderings. Then we examine compa-
rability and suprema of collections of well orderings. The last section contains
an analysis of an exercise from Sierpiński and its recent generalization.
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§1. Suprema within well orderings. We say that a linearly ordered set
α is well ordered if every nonempty subset of α has a least element. In practice
it is often convenient to use the equivalent definition that well orderings are
devoid of infinite descending sequences. The equivalence of these definitions is
easily provable in RCA0 using the following technical lemma.

Lemma 1. (RCA0) Let X be a linear ordering. For any sequence S of el-
ements of X, there is a set Y of elements in S such that S and Y have the
same upper bounds. This also holds for lower bounds.

Proof. Working in RCA0, suppose that X is a linear ordering and that
S = 〈si | i ∈ N〉 is a sequence of elements of X. If S has a maximum element,
then the set containing only that element satisfies the requirements for Y . If
S has no largest element, then by ∆0

1 comprehension, we may construct a
subsequence of S as follows. Let x0 = s0. Given {x0, . . . , xk} let xk+1 be the
element x of least index in S such that x > max{x0, . . . , xk, s0, . . . , sk} with
respect to ordering on X and with respect to the usual ordering on the integers.
Since S has no maximum, such an x always exists. Because sk < xk+1 for all
k, S and 〈xi | i ∈ N〉 have the same upper bounds in X. Because 〈xi | i ∈ N〉
is an increasing sequence of integers, by ∆0

1 comprehension the set {xi | i ∈ N}
exists. The argument for lower bounds is identical except that the sequence
〈xi | i ∈ N〉 is constructed so that it is descending with respect to the ordering
on X. a

We can now prove the equivalence of two familiar definitions of a well or-
dering.

Theorem 2. (RCA0) Let X be a linear ordering. The following are equiva-
lent:

1. X contains no infinite descending sequences.
2. Every nonempty subset of X has a least element.

Proof. To show that clause 1 implies clause 2, suppose that X contains a
nonempty subset with no least element. Using ∆0

1 comprehension we can con-
struct an infinite descending sequence from such a set. To prove the converse,
suppose X contains an infinite descending sequence. By Lemma 1, X contains
a set with exactly the same lower bounds. This set has no least element. a

In [1], Cantor uses a different definition of well ordering. He defines a well
ordered set as a set with a least element such that every subset with a strict
upper bound has a least strict upper bound. He then shows that this definition
is equivalent to those in the preceding theorem. We will show that ACA0 is
required to carry out Cantor’s proof. As a first step, we examine the existence
of general least upper bounds.

Theorem 3. (RCA0) The following are equivalent:

1. ACA0.
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2. If α is a well ordering, then every subset of α with an upper bound has a
least upper bound.

Proof. First assume ACA0 and suppose that α is well ordered. Let S be a
subset of α with an upper bound. By arithmetical comprehension, the set of
all upper bounds for S exists. Since α is well ordered, this set of upper bounds
has a least element.

To prove the reversal, assume that ACA0 fails. By the proof of Theorem 2
of [6], there is a well ordering β such that ω ≤s β, β 6≤s ω and ω + 1 6≤s β.
Suppose that f is an order preserving map of ω onto an initial segment of β.
Since β 6≤s ω, the range of f is bounded above in β. Because the domain of
f is ω, we may view its range as a sequence of elements of β. By Lemma 1,
there is a subset Y of β such that Y has exactly the same upper bounds as
the range of f . If Y had a least upper bound, we could extend f to witness
that ω + 1 ≤s β. Thus Y is a subset of β with an upper bound, but no least
upper bound. a

The relationship between upper bounds and strict upper bounds is shown
by the following theorem.

Theorem 4. (RCA0) Suppose X is a linear ordering. The following are
equivalent:

1. Every subset of X with an upper bound has a least upper bound, and every
nonempty final segment {x ∈ X | x > a} has a least element.

2. Every subset of X with a strict upper bound has a least strict upper bound.

Proof. Suppose X is a linear ordering and clause 1 holds. Let Y be a
subset of X with a strict upper bound. By clause 1, Y has a least upper
bound; call it b. If b /∈ Y , then b is the desired strict upper bound. Otherwise,
the least element of the final segment {x ∈ X | x > b} is the least strict upper
bound.

Now suppose that clause 2 holds. Let Y be a subset of X with an upper
bound b. If Y has a maximum element, then that element is the least upper
bound of Y . If Y has no maximum element, then b is a strict upper bound,
and the least strict upper bound provided by clause 2 is the least upper bound
of Y . Finally, the least element of the final segment {x ∈ X | x > a} is the
least strict upper bound of {a}. a

In light of the preceding two theorems, ACA0 is necessary and sufficient to
show that well ordered sets satisfy Cantor’s definition. (This is summarized
below in Corollary 6.) The next theorem shows that ACA0 is necessary and
sufficient to prove the converse.

Theorem 5. (RCA0) The following are equivalent:
1. ACA0.
2. Let X be a linear ordering. If every subset of X with a strict upper bound

has a least strict upper bound, then X is well ordered.
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Proof. First, assume ACA0 and let X be a linear ordering satisfying the
hypothesis of clause 2. Let Y be a nonempty subset of X. By arithmetical
comprehension, the set Z = {x ∈ X | ∀y ∈ Y (x < y)} exists. Each element of
Y is a strict upper bound of Z. By our hypothesis, Z has a least strict upper
bound; call it b. If b /∈ Y , then for every y ∈ Y we have b < y, and so b ∈ Z,
contradicting the construction of b. Thus, b is an element of Y , and can easily
be shown to be the least element of Y . Since Y was an arbitrary nonempty
subset, X is well ordered.

To prove the reversal, assume that ACA0 fails. By the proof of Theorem 3.1
of [3], there is a well ordering β such that ω ≤w β, β 6≤w ω, and ω + 1 6≤w β.
Invert the order on β; call the resulting linear ordering B. Since β is well
ordered, each subset of B has a largest element which is its least upper bound.
Given any final segment of B with no least element, it is possible to construct
an embedding of ω + 1 into β. Since this would contradict ω + 1 6≤w β, every
final segment of B has a least element. By Theorem 4, every subset of B with
a strict upper bound has a least strict upper bound. However, since ω ≤w β,
B contains an infinite descending sequence. By an application of Theorem 2,
B is not well ordered. Thus clause 2 fails, as desired. a

The preceding analysis of Cantor’s definition of well ordering is summarized
in the following corollary.

Corollary 6. (RCA0) The following are equivalent:

1. ACA0.
2. Suppose that X is a linear ordering. If every nonempty subset of X has

a least element, then every subset of X with a strict upper bound has a
least strict upper bound.

3. Suppose that X is a linear ordering. If every subset of X with a strict
upper bound has a least strict upper bound, then every nonempty subset
of X has a least element.

Proof. To see that clause 1 implies clause 2, assume ACA0 and let X be
a linear ordering in which every nonempty subset has a least element. By
Theorem 3, every subset of X with an upper bound has a least upper bound.
Every nonempty final segment is a set, and therefore has a least element. By
Theorem 4, every subset of X with a strict upper bound has a least strict
upper bound.

To prove that clause 2 implies clause ACA0, assume RCA0 and clause 2. Let
α be a well ordering, and let Y be a subset of α with an upper bound b. If Y
has a maximal element, then that element is the least upper bound of Y . If Y
has no maximal element, then b is a strict upper bound. By clause 2, Y has
a least strict upper bound, which must be the least upper bound of Y . Thus,
every subset of α with an upper bound has a least upper bound. By Theorem
3, ACA0 holds.

Theorem 5 shows the equivalence of clauses 1 and 3. a
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§2. Suprema of collections of well orderings. In the preceding section
we considered suprema of collections of elements within a well ordering. Now
we turn our attention to suprema of collections of well orderings. Clearly, find-
ing a supremum requires some comparability, so it is not surprising that ATR0

is needed to prove the existence of suprema in this setting. The following the-
orem holds for both weak and strong comparability, so the s and w subscripts
on ≤ are suppressed in the statement. The summation notation in the proof
is used to indicate the result of concatenating a well ordered sequence of well
orderings. RCA0 suffices to prove that such constructs are well ordered. (See
section 3 of [4]).

Theorem 7. (RCA0) The following are equivalent:
1. ATR0

2. Suppose 〈αx | x ∈ β〉 is a well ordered sequence of well orderings. Then
sup〈αx | x ∈ β〉 exists. That is, there is a well ordering α unique up to
order isomorphism satisfying
• ∀x ∈ β(αx ≤ α), and
• ∀γ(γ + 1 ≤ α→ ∃x ∈ β(αx 6≤ γ)).

Proof. First, we will prove that ATR0 implies clause 2 for strong compa-
rability. Assume that ATR0 holds and fix 〈αx | x ∈ β〉. By ATR0, for each
x ∈ β,

αx ≤s
(∑
y∈β

αy

)
+ 1.

Furthermore, using ATR0 we can construct a set A so that for every x ∈ β,
A contains the least upper bound of the initial segment of

∑
y∈β αy which is

order isomorphic to αx. The initial segment of
∑
y∈β αy lying below the least

strict upper bound of A is the desired α. Uniqueness follows easily from strong
comparability of well orderings. The weak comparability version of clause 2
follows from the strong comparability version.

To prove the reversal in the strong comparability case, select two well or-
derings α1 and α2. By clause 2, there is an α such that α1 ≤s α and α2 ≤s α.
Since α1 and α2 are both order isomorphic to initial segments of α, they must
be comparable. By Friedman’s theorem on strong comparability of well order-
ings [2], this implies ATR0.

For the weak comparability case of the reversal, suppose that ATR0 fails.
We will show that clause 2 fails also. We say that a well ordering α is inde-
composable if for each final segment β = {x ∈ α | x > b} we have α ≤w β. As
an example, ω is the least indecomposable well ordering. By Theorem 4.4 of
[5], we can find indecomposable well orderings α1 and α2 such that α1 6≤w α2

and α2 6≤w α1. Using the fact that α2 is indecomposable and α2 6≤w α1, we
can show that α1 ≤w α1 + α2, α2 ≤w α1 + α2, and γ + 1 ≤w α1 + α2 implies
α2 6≤w γ. Thus α1 + α2 satisfies the two conditions given in clause 2. Sim-
ilarly, α2 + α1 satisfies these conditions. If we assume that clause 2 is true,



6 J. HIRST

then by the uniqueness of the supremum, α1 + α2 ≡w α2 + α1. Because of
the indecomposability of α1, this implies α1 ≤w α2, yielding a contradiction.
Thus clause 2 fails, as desired. a

It would be interesting to know if the weak comparability version of clause
2 of Theorem 7 with the uniqueness condition omitted implies ATR0.

§3. The γ-lemma and Sierpiński’s problem. An interesting statement
of ordinal arithmetic called the γ-lemma is proved in [7]. This lemma, which is
stated in terms of ordinal suprema, considerably extends a result that appears
as Exercise 6 in Section 8 of Chapter XIV of Sierpiński’s Cardinal and Ordinal
Numbers [8]. (The page number varies with the printing.) In this section, we
will solve Sierpiński’s exercise in RCA0, and show that the γ-lemma is equiva-
lent to ATR0, providing a proof theoretic verification of the added strength of
the γ-lemma.

Theorem 8. (Sierpiński’s exercise) For each positive natural number n,
RCA0 proves ∑

α<ωn

α ≡s ω2n−1.

Proof. For n = 1, the result says that 0 + 1 + 2 + · · · ≡s ω, where the sum
on the left represents the result of concatenating a sequence of finite orderings
of increasing size. Formally, we want to show that ω is order isomorphic to
S = {〈i, j〉 | i ≥ 1 ∧ j < i} ordered by the relation

〈i1, j1〉 < 〈i2, j2〉 ↔
(
i1 < i2 ∨ (i1 = i2 ∧ j1 < j2)

)
.

Using RCA0, it is possible to define a function h : S → ω by h(j, k) = j(j −
1)/2 + k and prove that it is an order preserving bijection between S and ω.

For n > 1, the goal is to construct an order preserving bijection between∑
α<ωn α and ω2n−1. This is most easily done by composing a sequence of

bijections between successive terms in the following equality.∑
α<ωn

α =
∑
j<ω

∑
α<ωn−1

(ωn−1 · j + α)

=
∑
j<ω

∑
α<ωn−1

ωn−1 · j

=
∑
j<ω

(ωn−1)2

= ω2n−2 · ω = ω2n−1.

The construction of these bijections depends heavily on the indecomposability
of ωn−1, which is provable in RCA0 [5]. a

For each n ∈ ω, RCA0 proves that ωn is well ordered. However, RCA0 cannot
prove that for all n ∈ ω, ωn is well ordered. Adding induction for Σ0

2 formulas
to RCA0 yields an axiom system that is strong enough to prove the universally
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quantified statement. In this (slightly) stronger system, it is also possible to
prove the universally quantified version of Sierpiński’s exercise.

The authors of [7] note that Sierpiński’s exercise follows easily from the
following statement:

γ-lemma: Suppose γ is an ordinal and f is a non-decreasing func-
tion from ωγ into the ordinals. Then

∑
α<ωγ

f(α) = sup{f(α) · ωγ | α < ωγ}.

If we formalize the γ-lemma without reference to the uniqueness of the
supremum, and merely assert that the summation acts as a supremum for the
set {f(α) · ωγ | α < ωγ}, the resulting statement is equivalent to ATR0.

Theorem 9. (RCA0) The following are equivalent:

1. ATR0.
2. (γ-lemma) Suppose that ωγ is well ordered and f assigns a well ordered

set to each α < ωγ in such a way that if α < β < ωγ then f(β)+1 6≤ f(α).
Then
• For all α < ωγ , f(α) · ωγ ≤

∑
α<ωγ f(α), and

• If δ <
∑
α<ωγ f(α), then there is an α < ωγ such that f(α) ·ωγ 6≤ δ.

Proof. We will prove that clause 1 implies the strong comparability version
of clause 2. (The weak comparability version follows immediately from the
strong version.) Assume ATR0 and suppose that γ and f satisfy the hypotheses
of clause 2. Applying Theorem 7, let λ = sup〈f(α) · ωγ | α < ωγ〉. By the
definition of the supremum, f(α) · ωγ ≤s λ for all α < ωγ , and if δ < λ
then for some α < ωγ , f(α) · ωγ 6≤s δ. Consequently, we can complete the
proof by showing that λ ≡

∑
α<ωγ f(α). This can be done by the following

straightforward imitation of the proof of the γ-lemma from [7]. First we note
that ATR0 suffices to prove

∑
α<ωγ

f(α) ≡s sup{
∑
β<α

f(β) | α < ωγ}

≤s sup{
∑
β<α

f(α) | α < ωγ}

≡s sup{f(α) · α | α < ωγ}
≤s sup{f(α) · ωγ | α < ωγ} = λ.
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Also, for any β < ωγ , ATR0 can prove

f(β) · ωγ ≤s
∑
α<β

f(α) + f(β) · ωγ

≡s
∑
α<β

f(α) +
∑
α<ωγ

f(β)

≤s
∑
α<β

f(β) +
∑
α<ωγ

f(β + α)

≡s
∑

α<β+ωγ

f(α)

≡s
∑
α<ωγ

f(α).

The last step uses the fact that ATR0 can prove that ωγ is indecomposable.
(See [5].) The second string of inequalities shows that∑

α<ωγ

f(α) ≥ sup{f(α) · ωγ | α < ωγ} = λ

which combined with the first string of inequalities yields λ ≡
∑
α<ωγ f(α), as

desired.
To prove the reversal, assume RCA0 and ¬ATR0. Let α0 and α1 be indecom-

posable well orderings such that α0 6≤w α1 and α1 6≤w α0. Let γ = 1, and note
that RCA0 proves that ω = ω1 is well ordered. Define f by setting f(0) = α0

and f(n) = α1 for n ≥ 1. If m < n < ω, then the relation f(n) + 1 6≤ f(m)
is satisfied for all n and either form of comparability. However, by the weak
incomparability of α0 and α1, for either version of comparability we have

f(0) · ω = α0 · ω 6≤ α0 + α1 · ω =
∑
α<ω

f(α).

Thus the first item in clause 2 fails, completing the proof. a
The preceding theorem shows that the combinatorial content of the γ-lemma

is significantly stronger that the statement from Sierpiński’s exercise. Using
the result of the preceding section, ATR0 suffices to prove the existence of
the supremum in the informal version of the γ-lemma, so a straightforward
formalization of that version is also equivalent to ATR0.
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