
Reverse Mathematics and
Rank Functions for Directed Graphs

Jeffry L. Hirst
Appalachian State University

Appears in: Archive for Mathematical Logic
Volume 39, (2000) 569–579

Abstract

A rank function for a directed graph G assigns elements of a well
ordering to the vertices of G in a fashion that preserves the order in-
duced by the edges. While topological sortings require a one-to-one
matching of vertices and elements of the ordering, rank functions fre-
quently must assign several vertices the same value. Theorems stating
basic properties of rank functions vary significantly in logical strength.
Using the techniques of reverse mathematics, we present results that
require the subsystems RCA0, ACA0, ATR0, and Π1

1 −CA0.

A great deal of graph theory can be formalized in the language of second
order arithmetic. For example, it is possible to describe a countable directed
graph G by specifying a set V ⊆ N of (codes for) vertices and a set E ⊆
V × V of directed edges. The reader may wish to formalize some of the
following notions. A path in G from u0 to un is a finite sequence of vertices
u0, u1, . . . , un such that for each j < n, (uj, uj+1) ∈ E. G is acyclic if it
contains no paths with repeated vertices. A vertex v is an initial node for
G if it has no incoming edges, that is if for every vertex u, the edge (u, v) is
not in G. In this paper, we suppress most of the encoding of graph theoretic
concepts. For more detailed expositions of encoding mathematics in second
order arithmetic, see [4] or [8]. Also, only brief indications of the axioms of
the subsystems are given. For detailed descriptions of the axioms systems,
refer to [7] or [8].
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In [1], a number of theorems of algorithmic graph theory are analyzed in
the subsystems of second order arithmetic associated with reverse mathemat-
ics. In particular, topological sortings of graphs are studied. In a topological
sorting, the vertices of a directed graph are matched with the elements of an
initial segment of N. Rank functions allow the use of well orderings other
than N and assignments of values that are not injective. The formal definition
follows.

Definition. Suppose G is a directed acyclic graph with vertex set V and
edge set E. The pair 〈f, α〉 is a rank function for G if α is a well ordering, f
maps V onto α, and the following two properties hold:

1) (u, v) ∈ E implies f(u) < f(v), and

2) for any v ∈ V and x ∈ α, if x < f(v), then there is a u ∈ V such that
(u, v) ∈ E and x ≤ f(u).

The definition of rank function parallels the formalization of derived se-
quences used in [3]. The next three sections contain results concerning the
existence of rank functions, uniqueness of the functions, and some results on
bounded ranks.

Existence of rank functions

We begin by working in the weak base system RCA0. This axiom system
includes basic arithmetic axioms, induction restricted to Σ0

1 formulas, and a
set existence axiom asserting the existence of ∆0

1 definable sets. RCA0 can
prove the existence of rank functions for finite graphs. The proof is motivated
by the observation that for finite graphs, the rank function measures the
maximum distance of each vertex from initial nodes.

Theorem 1 (RCA0). Every finite directed acyclic graph has a rank function.

Proof. Working in RCA0, suppose G is a directed acyclic graph with n
vertices. We construct a function from the vertices to an initial segment of
n = {0, 1, . . . , n−1} as follows. Let v0, ..., vk be a list of all initial nodes of G.
SinceG is finite, this list is nonempty. For each i ≤ k, set f(vi) = 0. For every
other vertex v of G, list all the paths through G from each vi to v. Because
G is acyclic, there are at most n! such paths, each of which can be coded
by an integer less than a predetermined bound. Suppose vi, u1, u2, . . . , um, v

2



is a path of maximum length and, to insure determinacy of the algorithm,
minimum code number. Set f(v) = m+1. Because the domain of f is finite,
RCA0 can prove the existence of the range of f . Let α denote the range of
f with the standard ordering. Routine arguments verify that 〈f, α〉 is a rank
function for G.

Note that the preceding theorem can also be proved by induction on
the size of the graph. However, such a proof requires special care to avoid
exceeding the restricted induction scheme available in RCA0.

Not every infinite graph has a rank function. However, the following
definition gives a necessary and sufficient condition for the existence of a
rank function.

Definition. A directed graph is well founded if for every infinite sequence
of vertices 〈vi|i ∈ N〉 there is some j such that (vj+1, vj) is not an edge in the
graph.

The necessity of the condition is provable in RCA0.

Theorem 2 (RCA0). Suppose G is a countable directed graph. If G has a
rank function, then G is well founded.

Proof. Suppose 〈f, α〉 is a rank function for G. Also suppose, by way of
contradiction, that 〈vi|i ∈ N〉 is a sequence of vertices in G such that for
every j ∈ N, (vj+1, vj) is an edge in G. Then 〈f(vi)|i ∈ N〉 is an infinite
descending sequence in α, contradicting the fact that α is well ordered.

To prove that well foundedness is sufficient to insure the existence of
a rank function, we must introduce some additional terminology and two
technical lemmas.

Definition. Suppose G is a directed graph with subgraph G̃. The pair 〈f, A〉
is a partial rank function for G if A is a linear ordering, f maps the vertices
of G̃ onto A, and the two properties from the definition of rank function hold.

Lemma 3 (RCA0). Let G be a countable directed graph. If G is well founded
and 〈f, A〉 is a partial rank function for G, then A is well ordered.

Proof. Suppose G and 〈f, A〉 are as in the hypothesis. By way of contradic-
tion, suppose 〈ai|i ∈ N〉 is an infinite descending sequence in A. Since G is
countable, each vertex can be assigned a natural number code. Since f maps
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a subset of the vertices of G onto A, there is a vertex u0 ∈ G with minimal
code number satisfying f(u0) = a0. Suppose that we have defined a vertex
un such that f(un) ≥ an. Since an+1 < an ≤ f(un), applying the second
property of the definition of partial rank function yields a vertex un+1 with
minimal code such that an+1 ≤ f(un+1) < f(un) and (un+1, un) is an edge of
G. RCA0 suffices to prove that the sequence of vertices 〈un|n ∈ N〉 exists,
contradicting the hypothesis that G is well founded.

The next lemma and the following theorem use the subsystem ATR0.
This axiom system extends RCA0 by adding a set comprehension axiom
that allows iterations of arithmetical comprehension along well orderings.
The proof of Lemma 4 is given in [3], where it appears as Lemma 4.3.

Lemma 4 (ATR0). Let ψ(X) be a Σ1
1 formula such that for all X if ψ(X),

then X is well ordered. Then there is a well ordering β such that for all X,
if ψ(X), then X < β. (Here X < β means that X is order isomorphic to a
proper initial segment of β.)

Now we have the machinery needed to prove the existence of rank func-
tions.

Theorem 5 (ATR0). Every countable well founded directed graph has a rank
function.

Proof. Let G be a countable well founded directed graph with vertex set
V and edge set E. We will construct a rank function 〈f, α〉 by applying
arithmetical transfinite recursion. This proof is very similar to the three step
proof in ATR0 of the existence of derived sequences for closed sets. (See
Lemma 4.4 of [3].) First we will find an upper bound for α. Then we will
construct the rank function. Finally, we will verify the properties of the
function.

The bound on α is found by applying Lemma 4. Let ψ(X) be the Σ1
1

formula stating that X is a linear ordering and that for some function g,
〈g,X〉 is a partial rank function for G. By Lemma 3, if ψ(X) holds, then X
is well ordered. By Lemma 4, there is a well ordering β such that for all X,
ψ(X) implies X < β. β will serve as the upper bound for our construction.

We will use ATR0 to construct the rank function for G. ATR0 asserts
that we can construct a sequence of sets 〈Y λ|λ < β〉, where for each λ, Y λ is
uniformly arithmetically definable from the sets {Y γ|γ < λ}. To define the
rank function, let Y 0 be the set of initial nodes. Given Y γ for all γ < λ, let
Y λ consist of those vertices v ∈ V satisfying the following two properties:
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1. ∀γ < λ(v /∈ Y γ), and

2. ∀u ∈ V ((u, v) ∈ E → ∃γ < λ(u ∈ Y γ)).

Given the sequence of sets 〈Y λ|λ < β〉, define f : V → β by setting f(v)
equal to the (unique least) λ such that v ∈ Y λ. Let α be the range of f . The
remainder of the proof verifies that 〈f, α〉 is a rank function for G.

First, we verify that 〈f, α〉 is a partial rank function for G. If v ∈
domain(f), then by clause 2 of the definition of Y λ, {u|(u, v) ∈ E} ⊂
domain(f). Consequently, the restriction of G to the vertices in domain(f)
is a subgraph of G. We must verify each of the properties of a partial rank
function. First, if u, v ∈ domain(f), (u, v) ∈ E, and f(v) = λ, then by clause
2 of the definition of Y λ, there is a γ < λ such that f(u) = γ. Second,
suppose v ∈ domain(f) and x ∈ α such that x < f(v). As noted before,
{u|(u, v) ∈ E} ⊂ domain(f). Suppose, by way of contradiction, that for
every u such that (u, v) ∈ E, f(u) < x. Let γ be the least element of α
greater than every element of {f(u)|(u, v) ∈ E}. Then γ ≤ x, and v satisfies
both clauses of the definition of Y γ. Thus f(v) = γ ≤ x, contradicting our
assumption that x < f(v). Summarizing, we have shown that 〈f, α〉 is a
partial rank function for G.

Finally, we must show that domain(f) ⊇ V . Suppose otherwise. If every
vertex not in the domain of f has a predecessor not in the domain of f ,
then G is not well founded. Thus, there is a vertex v /∈ domain(f) with
the property that for every u such that (u, v) ∈ E, u ∈ domain(f). Let
S = {f(u)|(u, v) ∈ E}. Since S is a subset of α, and α is a proper initial
segment of β, there is a least λ ∈ β which is greater than each element of
S. The vertex v satisfies both clauses of the definition of Y λ, so λ ∈ α and
v ∈ domain(f), yielding a contradiction. Thus domain(f) = V , completing
the proof.

Our proof of the reversal of the preceding theorem uses transfinite versions
of some restricted induction and least element schemes. For a more extended
analysis of schemes of this sort, see [5].

Lemma 6. RCA0 can prove the Σ0
1 transfinite least element principle, and

the Π0
1 transfinite induction scheme.

Proof. We will work in RCA0. To prove the Σ0
1 transfinite least element

principle, suppose that α is a countable well ordering, θ is a quantifier free
formula, and that for some a0 ∈ α, ∃tθ(a0, t) holds. By way of contradiction,
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suppose that for each a ∈ α, if ∃tθ(a, t) holds then there is an ã ∈ α such that
ã < a and ∃tθ(ã, t). Enumerate all pairs of the form (a, t) where a ∈ α and
t ∈ N. Given an, let an+1 be the first coordinate of the first pair (a, t) such
that θ(a, t) holds and a < an. RCA0 proves that the descending sequence
〈aj|j ∈ N〉 exists, contradicting the claim that α is well founded. Thus the
Σ0

1 transfinite least element principle holds.
To show that the Π0

1 transfinite induction scheme holds, suppose not and
use the Σ0

1 transfinite least element principle to derive a contradiction.

Although ATR0 is a relatively strong axiom system, its use in Theorem
5 is provably unavoidable, as shown by the following theorem.

Theorem 7 (RCA0). The following are equivalent:

1) ATR0.

2) Every countable well founded directed graph has a rank function.

Proof. Theorem 5 states that 1) implies 2). To prove the reversal, we will use
2) to show that every pair of countable well orderings is strongly comparable.
Proofs that comparability of well orderings is equivalent to ATR0 can be
found in [2] and [8]. Let α and β be well orderings. Let Gα be the graph
which has the elements of α as its vertices and includes all edges of the form
(x, y) where x < y in the ordering on α. Define Gβ similarly. Let G be the
graph consisting of Gα and Gβ. Since G is a well founded directed graph, we
may apply 2). Let 〈f, γ〉 be the rank function for G.

We claim that α is order isomorphic to an initial segment of γ, that
is, α ≤ γ. Since the elements of α are vertices of Gα and hence of G, f
maps α into γ. By the definitions of Gα and rank functions, f is order
preserving, and hence one to one. To see that f maps α onto an initial
segment of γ, suppose otherwise. Suppose that v is a vertex of Gα, x ∈ γ,
x /∈ {f(u)|u ∈ α}, and x < f(v). Applying Lemma 6 in the form of the Σ0

1

transfinite least element principle, we can find the least vertex w of Gα such
that f(w) > x. By the definition of rank function, there is a vertex y of G
such that x ≤ f(y) < f(w) and (y, w) is an edge of G. By the choice of w,
y /∈ Gα. But by the construction of G, since there are no edges from vertices
of Gβ to vertices of Gα, y /∈ Gβ. Thus, no such y exists, and f witnesses that
α ≤ γ.

The preceding paragraph can be repeated with α replaced by β, yielding
α ≤ γ and β ≤ γ. Since both α and β are order isomorphic to initial segments
of γ, they are comparable.
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Imitating Cantor and Bendixson, we can extend rank functions to graphs
that are not well founded. The resulting statement is equivalent to Π1

1 −CA0,
which is substantially stronger than ATR0.

Theorem 8 (RCA0). The following are equivalent:

1) Π1
1 −CA0.

2) If G is a directed graph with vertex set V , then there is a pair 〈f, α〉
such that α is a well ordering, f : V → α ∪ {∞}, and the following
properties hold:

• f is a rank function on the preimage of α, and

• if f(u) = ∞, then there is a v ∈ V such that (v, u) is an edge in
G and f(v) =∞.

Proof. To prove that 1) implies 2), assume Π1
1 −CA0 and let G be a directed

graph with vertex set V . Let V∞ be the set of non-well-founded vertices of G.
That is, put v in V∞ if there is an infinite sequence 〈vi|i ∈ N〉 such that (v0, v)
is an edge and for each i, (vi+1, vi) is an edge. Since V∞ is the complement of
a Π1

1 definable set, Π1
1 −CA0 proves its existence. The subgraph of G with

vertices in V − V∞ is well founded and has a rank function f by Theorem 5.
Extending the domain of f to V by setting f(v) =∞ for each v ∈ V∞ yields
a function satisfying the requirements of 2).

To prove the reversal, it suffices to find a function that selects well founded
trees from a sequence of trees. Given a tree T , construct GT as follows. The
vertices of GT will be the nodes of T . If w is an immediate extension of u,
include the edge (w, u). Informally, the edges of GT are directed toward the
root of T . RCA0 can prove that GT is well founded if and only if T is well
founded. Suppose 〈Tn|n ∈ N〉 is a sequence of trees. Using only RCA0, we
can construct the sequence 〈GTn|n ∈ N〉 and take its disjoint union to create
a graph G. Let ρn denote the vertex corresponding to the root of Tn for each
n. Applying 2), we obtain a function f such that f(ρn) = ∞ if and only if
Tn is not well founded.

Uniqueness of rank functions

Although ATR0 is required to prove that rank functions exist, RCA0 can
prove that they are unique. First we need some technical results.
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Lemma 9 (RCA0). Suppose 〈f, α〉 and 〈g, β〉 are rank functions for the
same countable graph. Then for every pair of vertices u and v, f(u) < f(v)
if and only if g(u) < g(v).

Proof. Suppose 〈f, α〉 and 〈g, β〉 are rank functions for the graph G which
has vertex set V and edge set E. Working in RCA0, by Lemma 6 we may
apply Π0

1 transfinite induction on α. Let ψ(a) denote the formula

∀u∀v((f(u) < a ∧ f(v) < a)→ (f(u) < f(v)↔ g(u) < g(v))).

For the base case, suppose 0 denotes the least element of α. Since ∀u(f(u) 6<
0), ψ(0) is vacuously true.

Now suppose that ∀x < a ψ(x) holds. We will prove ψ(a). Fix u and v
so that f(u) < a and f(v) < a.

First suppose that f(u) < f(v). By the definition of a rank function,
∃w ∈ V (f(u) ≤ f(w) ∧ (w, v) ∈ E). Note that f(w) < f(v) < a. By the
induction hypothesis, specifically by ψ(f(v)), we have f(w) < f(u) if and
only if g(w) < g(u). Since f(u) ≤ f(w), f(w) 6< f(u), and so g(w) 6< g(u),
which in turn implies that g(u) ≤ g(w). Because (w, v) ∈ E, the definition
of rank function yields g(w) < g(v). Summarizing, g(u) ≤ g(w) < g(v), so
we have shown that if f(u) < f(v) then g(u) < g(v). To be very specific, we
have shown that

∀u∀v((f(u) < a ∧ f(v) < a)→ (f(u) < f(v)→ g(u) < g(v))).

To complete the proof of the biconditional, we will assume f(u) 6< f(v)
and prove g(u) 6< g(v). By trichotomy in α, f(v) < f(u) or f(v) = f(u). If
f(v) < f(u), then by imitating the preceding paragraph we can show that
g(v) < g(u), which by trichotomy in β implies that g(u) 6< g(v) as desired.
Now suppose that f(u) = f(v). By way of contradiction, suppose that
g(u) < g(v). Then by the definition of rank functions, we can choose a w ∈ V
so that (w, v) ∈ E and g(u) ≤ g(w) < g(v). Because (w, v) ∈ E, f(w) <
f(v). Since f(u) = f(v), f(w) < f(u). Since f(u) < a, we have f(w) < a,
f(u) < a, and f(w) < f(u), so by the observation at the end of the preceding
paragraph we immediately obtain g(w) < g(u). But this contradicts our
previous conclusion that g(u) ≤ g(w). Thus g(u) 6< g(v). Summarizing, we
have shown that if f(u) 6< f(v), then g(u) 6< g(v), completing the proof of the
biconditional and the induction step. The lemma follows by Π0

1 transfinite
induction.
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Applying trichotomy and the preceding lemma yields the following corol-
lary.

Corollary 10 (RCA0). Suppose 〈f, α〉 and 〈g, β〉 are rank functions for the
same countable graph. Then for every pair of vertices u and v, f(u) = f(v)
if and only if g(u) = g(v).

The next two theorems assert the uniqueness of derived sequences.

Theorem 11 (RCA0). Suppose that 〈f, α〉 and 〈g, β〉 are rank functions for
the same countable graph. Then α is order isomorphic to β.

Proof. Let 〈f, α〉 and 〈g, β〉 be rank functions for G. Let V denote the
vertex set of G. Note that the elements of V are actually integer codes for
the vertices of G. Since f maps V onto α, for each y ∈ α there is a least
(code for a) vertex v ∈ V such that f(v) = y; we will write v = f̃(y) for
such a vertex. Define the function h : α → β by setting h(y) = g(f̃(y)) for
each y ∈ α. By ∆0

1 comprehension, the function h exists. Routine arguments
show that h is well defined and has domain α.

We will show that h is order preserving. Suppose that a0, a1 ∈ α, and
a0 < a1. Let u = f̃(a0) and v = f̃(a1). Since f(u) = a0 < a1 = f(v),
by Lemma 9 we have g(u) < g(v). Since g(u) = g(f̃(a0)) = h(a0) and
g(v) = g(f̃(a1)) = h(a1), we have h(a0) < h(a1) as desired. Thus, h is order
preserving. As an immediate consequence, we know that h is one to one.

To show that h is onto, pick b ∈ β. Since g maps V onto β, there is a
vertex v such that g(v) = b. Let a = f(v), and let w = f̃(a). Note that
f(v) = a = f(w). By Corollary 10, g(w) = g(v). Thus, h(a) = g(f̃(a)) =
g(w) = g(v) = b. Summarizing, we have shown that h is an order preserving
bijection between α and β.

Theorem 12 (RCA0). Suppose that 〈f, α〉 and 〈g, β〉 are rank functions for
the countable graph G, and h is an order preserving bijection from α to β.
Then for all vertices v of G, h(f(v)) = g(v).

Proof. Let G, f , α, g, β, and h be as in the hypothesis of the theorem.
Let V denote the vertex set of G, and let E denote the edge set. In order
to prove that h(f(v)) = g(v), we wish to eliminate the possibilities that
h(f(v)) < g(v) or that h(f(v)) > g(v).

First suppose that there is a vertex v such that h(f(v)) < g(v). By
Lemma 6 we can apply the transfinite Σ0

1 least element principle and select
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the least b ∈ β such that there is a vertex v such that h(f(v)) < g(v) = b.
By the definition of rank function, there is a w ∈ V such that (w, v) ∈ E
and h(f(v)) ≤ g(w) < b = g(v). Since (w, v) ∈ E, f(w) < f(v), and
since h is order preserving, h(f(w)) < h(f(v)). Thus, h(f(w)) < g(w) < b,
contradicting the minimality of b. Thus, for every vertex v, h(f(v)) 6< g(v).

Now suppose that there is a vertex v such that h(f(v)) > g(v). Because
h is an order preserving bijection, this implies that there is a vertex v such
that h−1(g(v)) < f(v). Interchanging the roles of f and g in the preceding
paragraph and replacing h by h−1 yields another contradiction. Thus, for
every vertex v, h(f(v)) 6> g(v).

Since β is well ordered, it satisfies trichotomy. In light of the previous
two paragraphs, for every vertex v, we have h(f(v)) = g(v).

Bounded ranks

By bounding the size of the well ordering, the strength of the existence
theorems for rank functions can be reduced. The main theorem in this section
uses ACA0, which allows single applications of arithmetical comprehension.
ACA0 is substantially weaker than ATR0.

We will need some terminology. A rank function 〈f, α〉 is bounded by β
if α is (order isomorphic to) an initial segment of β. We say that a directed
graph G is path bounded if for every pair of vertices v and u of G there is
an integer n such that every path from v to u has length at most n. We say
that G is uniformly path bounded if there is an integer n such that for every
pair v and u, the length of each path from v to u is at most n.

The proofs of the statements in Lemma 13 are routine, and have been
omitted.
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Lemma 13 (RCA0). Suppose that G is a countable directed graph.

1) If G is uniformly path bounded, then G is path bounded.

2) If G is path bounded, then G is acyclic.

3) If G has a rank function bounded by N, then G is path bounded.

4) If G has a rank function bounded by k ∈ N, then G is uniformly path
bounded.

Using Lemma 13, we can prove our final theorem. Aficionados of reverse
mathematics might initially guess that the bounds in part 3) of the theorem
should result in a statement provable in WKL0. Clearly, this is not the case.

Theorem 14 (RCA0). The following are equivalent.

1) ACA0.

2) If G is a countable directed graph, then G is path bounded if and only
if G has a rank function bounded by N.

3) If G is a countable directed graph, then G is uniformly path bounded if
and only if G has a rank function bounded by some n ∈ N.

Proof. To prove that 1) implies 2), assume ACA0 and suppose G is a path
bounded directed graph. Define the function f by setting f(v) = 0 for each
initial node v. For any other vertex u, set f(u) to the length of the longest
path from an initial node to u. By arithmetical comprehension, both f and
range(f) exist. Let α = range(f). The reader may wish to verify that 〈f, α〉
is a rank function for G bounded by N. This proves one implication of 2);
the converse follows from Lemma 13.

To prove that 2) implies 3), assume RCA0 and 2). Suppose that G is
a directed graph uniformly path bounded by n. By Lemma 13, G is path
bounded, so by 2), G has a rank function 〈f, α〉 bounded by N. If there
is an integer m ∈ α such that m > n, then there is a vertex u0 of G such
that f(u0) = m. A path leading to u0 can be defined as follows. Given
any vertex uj such that f(uj) = m − j, by the definition of rank function
there is a (unique least) vertex uj+1 such that (uj+1, uj) is an edge and
f(uj+1) = m − j − 1. Consequently, G contains a path um, um−1, . . . , u0
of length m, contradicting the claim that G is uniformly path bounded by
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n < m. Summarizing, 〈f, α〉 is a rank function for G which is bounded by
n+ 1. This completes the proof of one implication of 3); the converse follows
from Lemma 13.

To prove that 3) implies 1), it suffices to use RCA0 and 3) to prove the
existence of the range of an arbitrary injection. (For a proof of this, see
Lemma 2.3 of [6].) Let h : N → N denote the injection. Construct a graph
G as follows. The vertices of G are v0 (the source node), {xn|n ∈ N} and
{yn|n ∈ N}. For each n ∈ N, include the edges (v0, yn) and (v0, xn) in G.
Additionally, if h(j) = k, include the edge (xj, yk). RCA0 suffices to prove
that G exists and that it is uniformly path bounded by 2. By 3), there is a
rank function 〈f, α〉 for G. Since G contains paths of length 2 but no paths
of length 3, α = {0, 1, 2}. Furthermore, k ∈ N is in range(h) if and only if
f(yk) = 2. By ∆0

1 comprehension, the range of h exists, completing the proof
of the reversal.

Theorems 7 and 14 both continue to hold if G is required to have a single
source node from which every other vertex can be reached.
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