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Summary. Working in the framework of reverse mathematics, we consider representa-
tions of reals as rapidly converging Cauchy sequences, decimal expansions, and two sorts
of Dedekind cuts. Converting single reals from one representation to another can always
be carried out in RCAq. However, the conversion process is not always uniform. Converting
infinite sequences of reals in some representations to other representations requires the use
of WKLO or ACAo.

Early in the study of computable analysis, several authors noted that
many representations of computable reals could be computably converted
to other representations on a real by real basis [8], [7], [5]. Mostowski [4]
observed that converting certain sequences of computable reals between rep-
resentations was not a computable process. A more recent development of
representations of sequences of reals from the viewpoint of computable anal-
ysis in the TTE (Type-2 Theory of Effectivity) framework appears in Chap-
ter 4 of [11]. Because of the significance of sequences of reals in computable
analysis (see [6] and [11]) and reverse mathematics (see [9]), this is more
than an idle curiosity.

We will analyze representations of reals using the techniques of reverse
mathematics. The subsystems used in this paper are RCAy, WKLy, and
ACAg. The systems differ in the available set comprehension axioms. RCAg
includes the recursive comprehension axiom, which essentially asserts the
existence of relatively computable sets. WKLy appends a weak version of
Konig’s lemma that says that infinite 0-1 trees have infinite paths. ACAq
adds a comprehension scheme for arithmetically definable sets. Simpson’s
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book [9] is an excellent resource for complete details about these subsys-
tems.

Section 1 introduces the various representations considered here and no-
tions of equality between reals. Section 2 includes conversion results that can
be proved in RCAy, including conversions for single reals. Section 3 presents
equivalence results showing the necessity of using stronger axiom systems for
some conversions. That section ends with a table summarizing the results of
Sections 2 and 3. Section 4 presents related results on sequences of irrational
numbers and change of basis for expansions.

1. Representations of reals. We will consider four ways of represent-
ing reals and encoding these representations in RCAg. The first is the usual
rapidly converging Cauchy sequence used in reverse mathematics. A function
0:N — Q is a rapidly converging Cauchy sequence if o satisfies

VE Vi |o(k) — o(k +14)] < 27

For our purposes, a decimal expansion is a special sort of rapidly converging
Cauchy sequence in which 0(j) gives the first j decimal places of the decimal
representation of the real. Thus,  : N — Q is a decimal expansion if §(0) is
an integer or the special digit —0, and

VEk 35 €{0,...,9} (6(k 4+ 1) — 6(k) = sign(5(0)) - 7 - 107F71),

In this definition, decimal expansions terminating in either repeating nines or
repeating zeros are allowed. We will treat these special cases in our discussion
of equality. To make the signs work correctly, we must distinguish between —0
and 0 as a digit. For example, the first digit of an element of the interval
(—1,0) will be —0. The first digit in a representation of 0 could be either —0
or 0.

The remaining two representations are forms of Dedekind cuts. Since
RCA( proves that the complement of any given subset of QQ exists, we can
encode a cut by specifying just the elements of the lower set. To be precise,
aset A C Qis a (lower) Dedekind cut if 0 C A C Q and

VseQVs €Q ((seANs &N —s<s).

This definition is exactly like that in Section IV of Dedekind [1] in that cuts
representing a rational number may or may not contain the rational. Many
modern analysis texts specify the location of the rational in this case. We can
append this requirement to the definition as follows. A set o C Q is an open
cut if it is a Dedekind cut and Vs € o 35’ € o (s < §’). This completes our
list of representations of reals: rapidly converging Cauchy sequences, decimal
expansions, Dedekind cuts, and open cuts.

In reverse mathematics, equality of sets is defined extensionally from
equality on natural numbers. Similarly, equality of representations of reals
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requires definition. For example, following Simpson [9], if ¢ and 7 are rapidly
converging Cauchy sequences, then we say that ¢ and 7 are equal (and write
o=r)if

VE (lo(k) — 7(k)| <277

Naively, we are saying that o = 7 if the sequences converge to the same real.
Technically, we are abusing notation, since we may write o = 7 (as reals)
even when ¢ and 7 are not equal as sets.

Since a decimal expansion is a special sort of rapidly converging Cauchy
sequence, equality of decimal expansions is defined as in the preceding para-
graph. In RCA( it is easy to prove that if p and 7 are decimal expansions,
then o = 7 if and only if either p and 7 agree in every digit, or else (sub-
ject to renaming p and 7) there is a j such that o(i) = 7(i) for i < j,
lo(7)] = |7(j)| + 107, and o(k) = 0 and 7(k) = 9 for & > j. Of course,
since decimal expansions are rapidly converging Cauchy sequences, equality
between reals in these two representations is defined.

Now we may turn to equality of cuts. Two Dedekind cuts are equal (as
reals) if they differ in at most one element. Since open cuts are Dedekind
cuts, this definition extends to comparisons between open cuts or between
open cuts and other Dedekind cuts. RCAg can prove that if two open cuts
are equal (as reals) then they must agree on all elements, and so are equal
as sets also.

Finally, suppose that A is a Dedekind cut and g is a rapidly converging
Cauchy sequence. We say that A and ¢ are equal (as reals) if

Vk Vs Vs ((s€ANs & N) —[s,8]N[o(k) — 27% o(k) + 2_k] #0).

Intuitively, a rapidly converging Cauchy sequence can be viewed as specify-
ing a real as a nested sequence of closed intervals, and similarly, a Dedekind
cut can be viewed as specifying a real as the intersection of a set of closed
intervals. If the intervals all overlap, then the two representations must cor-
respond to the same real. It is also worth noting that the formula

[s,8'] N [o(k) — 27", o(k) +27F] £
can be written as a comparison of rational endpoints,
—(o(k)+27F < svs < o(k)—27F),

which is a AJ formula. Thus the formula encoding A = ¢ is I, as are the
formulas encoding equality between rapidly converging Cauchy sequences
and equality between cuts.

We have defined four representations of real numbers, and have defined
equality between any possible pair of representations. With this terminology,
we can discuss conversions between representations.
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2. Conversions in RCAg. In this section, we will examine those situa-
tions where it is possible to convert a sequence of reals in one representation
to a sequence in another representation while working within RCAg. By the
end of the section, we will be able to dispense with conversions of single
reals. Conversions that require stronger axiom systems will be presented in
the next section. In the statement of the following theorems, the notation
(RCAy) indicates that the result is provable in RCA.

THEOREM 1 (RCAg). If (\i)ien is a sequence of Dedekind cuts, then
there is a sequence (0;);en of decimal expansions such that for each i € N,

Proof. Suppose (\;);en is a sequence of Dedekind cuts. We will indicate
how to compute d;(j), the jth element of the ith decimal expansion.

For j = 0, let z be the greatest integer in \;. Note that z exists because
i # Q and the complement of ); is closed upward. If z > 0, then 6;(0) = z.
If z < 0, then 0;(0) = z 4+ 1, where —1 + 1 is taken to be —0.

Suppose 6;(j) has been computed. If §;(0) > 0, let d be the greatest
element of K = {k-10°"1 | k € {0,...,9}} such that §;(j) +d € \;, and set
9i(j+1) =0;(j) +d. If 6;(0) <0, let d be the greatest element of K such
that 0;(7) —d & \;, and set §;(j + 1) = §;(j) — d.

The preceding computation shows that the proof of the existence of
(0;)ien can be carried out in RCAg. The claim that \; = §; for all i € N
follows immediately from the definition of equality between Dedekind cuts
and rapidly converging Cauchy sequences. =

Since every open cut is a Dedekind cut and every decimal expansion is a
rapidly converging Cauchy sequence, Theorem 1 has the following corollary.

COROLLARY 2 (RCAg). If (u;)ien is a sequence of reals in a representa-
tion in the following list, then for any representation appearing lower in the
list there is a sequence (T;);cN in that representation such that for all i € N,
Hi = Tyt

e open cuts,

e Dedekind cuts,

e decimal expansions,

e rapidly converging Cauchy sequences.

With one additional result, we can resolve the conversion problem for all
single reals.

THEOREM 3 (RCA). Suppose o is a rapidly converging Cauchy sequence.
Then there is an open cut o such that o = o.

Proof. Let o be a rapidly converging Cauchy sequence. Either ¢ repre-
sents a rational or it does not. (This assertion is not uniform.) If p repre-
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sents the rational r, then let A = {g € Q | ¢ < r}. Otherwise, ¢ is not
equal to any rational. Consequently, for any ¢ € Q, there is a £ € N such
that o(k) +27% < q or o(k) —27% > ¢. The open cut \ is constructed by
excluding ¢ when o(k) +27% < ¢ and including ¢ when o(k) —27% > ¢. m

Combining Theorem 3 and Corollary 2 for constant sequences yields the
following corollary showing that for single reals all conversions can be carried
out in RCAq. The computability-theoretic analog of this result was observed
by Robinson [8], Myhill [5], and Rice [7].

COROLLARY 4 (RCAy). If w is a single real in any of the four represen-
tations, then there is a real T in each of the other representations such that
w=r.

Proof. Theorem 3 allows conversions from the bottom of the list in Corol-
lary 2 to the top. m

In the next section we will see that the nonuniformity in the proof of
Theorem 3 is unavoidable. Consequently, proving the analog of Corollary 4
for sequences of reals requires stronger axiom systems than RCA.

3. Conversions requiring WKLy and ACAg. In this section we will
show that conversions between some representations of reals require axioms
beyond RCA(. Our work will be simplified by the following technical lemma.
This lemma extends a conservation result due to Kohlenbach [3, Proposi-
tion 3.1].

LEMMA 5 (RCAg). The following are equivalent:

(1) WKL,.

(2) If (fi)ien and (g;)icn are sequences of functions with pairwise dis-
joint ranges, that is, such that Vi Yn Ym (f;(n) # g;(m)), then
there is a sequence (X;);en of sets such that for each i, Vn (f;(n) €

(3) If (T})ien is a sequence of infinite 0-1 trees, then there is a sequence
(Xi)ien such that for each i, X; is an infinite path through T;.

Proof. Since the existence of a separating set for a single pair of functions
implies WKLg [9, Lemma IV.4.4|, as does the existence of an infinite path
through a single infinite 0-1 tree, it suffices to show that (2) and (3) follow
from WKL,.

Suppose (fi)ien and (g;)ien are sequences of functions with pairwise dis-
joint ranges, as in (2). Fix a bijection between N x N and N, and identify
each ordered pair with its integer code. Define functions f and g by setting
fli,n) = (fi(n),i) and g(i,n) = (gi;(n),7). Since we are viewing ordered pairs
as being interchangeable with their integer codes, we may think of f and ¢
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as functions from N to N. Note that if f(i,n) = g(j,m), then j = ¢ and
fi(n) = gj(m) = gi(m), contradicting the claim that the ranges of f; and g;
are disjoint. Thus f and g have disjoint ranges. WKL suffices to prove the
existence of a separating set X for f and ¢ [9, Lemma IV.4.4]. For each i,
let X; ={m | (m,i) € X}. Then for all n, (f;(n),i) € X so fi(n) € X;, and
(9i(n),i) ¢ X so g;(n) ¢ X;. Thus WKL proves (2) as desired.

Now we will use WKL to prove (3). Let (T;);en be a sequence of infinite
0-1 trees. Form a tree T of finite sequences of natural numbers as follows.
For j € N, if for each ¢ < j we are given a sequence o; in T; of length j — 4,
then form the sequence

o = (00(0), (c0(1),01(0)),...,(00(j —1),...,0;-1(0))).

By identifying the inner finite sequences with their integer codes, o can be
viewed as a sequence of j natural numbers. Let T be the tree of all such
sequences. Since each Tj is a 0-1 tree, o(n) can take at most 2"*! possible
values, so T is a bounded tree. WKL suffices to prove the existence of an
infinite path through 7' [9, Lemma IV.1.4]. Given a path X = (po, p1,p2,...)
through T, for each i the sequence X; = (p; (i), pi+1(2), pi+2(),...) is a path
through 7;. This completes the proof of (3)from WKLg. =

Now we can turn to the theorems on converting representations. The next
three theorems will enable us to completely analyze all possible conversions.

THEOREM 6 (RCAq). The following are equivalent:

(1) WKLy.

(2) If (0i)ien is a sequence of rapidly converging Cauchy sequences then
there is a sequence (0;)ien of decimal expansions such that for each
1 €N, g; =9;.

Proof. To prove that (1) implies (2), assume WKL and let (g;);en be a
sequence of rapidly converging Cauchy sequences. For each p;, construct a
tree T; as follows. Put a sequence § in Tj if § is an initial segment of a decimal
expansion and for each j < 1h(9), 0;(j) — 279 < 6(j) < 0:i(j) +277FL. For
each k, each initial segment of the sequence consisting of the first k digits of
the decimal expansion of g;(k) satisfies these conditions, so 7} is an infinite
tree. If §; is an infinite path through T}, then from the definition of equality
for rapidly converging Cauchy sequences, o; = d;. RCAg suffices to prove that
the sequence (T;);en exists, and by Lemma 5, WKL, proves the sequence
(0;)ieN exists.

To prove the reversal, it suffices to use RCAp and (2) to separate the
ranges of disjoint functions [9, Lemma IV.4.4]. The computable analysis
counterexample corresponding to this implication appears as part of Theo-
rem 4 of [4]. Suppose f and g are injections such that Vn Vm (f(n) # g(m)).
Define a sequence of rapidly converging Cauchy sequences as follows. For
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each ¢ and j, let

1 if k< j (F(k) # A glk) # ),

0i(j) =3 1+27% ifk<jnfk)=1i,

1-27F ifk<jnglk)=i.
By the recursive comprehension axiom, (0;)ien exists. Apply (2) to obtain a
sequence (d;);en of decimal expansions such that for all i € N, g; = ;. Note
that if f(k) = ¢ then §;(0) = 1, and if g(k) = ¢ then §;(0) = 0. Thus the
function x(i) = 6;(0) is the characteristic function for a separating set for
the ranges of f and g. »

THEOREM 7 (RCAg). The following are equivalent:

(1) WKLo.
(2) If (0i)ien is a sequence of decimal expansions then there is a sequence
(N\i)ien of Dedekind cuts such that for each i € N, §; = \;.

Proof. To prove that (1) implies (2), assume WKLy and let (d;);en be
a sequence of decimal expansions. Fix an enumeration of Q. Note that the
sign of a decimal expansion ¢; can be determined from ¢;(0). For each d
define a pair of functions f, and g as follows. If §; is greater than 0 or
equal to 0, let fp(m) = ¢, where ¢ is the first element of Q that is not in
[fx(m)]U[gr(m)] (the ranges of fi and g, on values less than m) that satisfies
q < 0x(m). Let gp(m) = q where ¢ is the first element of Q that is not in
[f(m + 1)] U [gr(m)] that satisfies ¢ > d(m) + 107" If J is less than 0
or equal to —0, let fx(m) = q where ¢ is the first element of Q that is not
in [fr(m)] U [gr(m)] that satisfies ¢ < dx(m) — 107™. Let gi(m) = ¢ where
q is the first element of Q that is not in [fx(m + 1)] U [gx(m)] that satisfies
q > d0r(m). RCA suffices to prove the existence of the sequences ( fi)ren and
(gk)ken- By Lemma 5, WKL proves the existence of a sequence (\;);en such
that for each k, A\; contains the range of f; and is disjoint from the range
of k-

We will show that A\ is a Dedekind cut and d; = . Suppose that 0 (0)
is greater than O or equal to 0. If ¢ € Q and ¢ < &, then for some m,
q < 0k(m). Since d is an increasing function, for some n > m, frx(n) = ¢,
s0 g € \g. If ¢ € Q and ¢ > g, then for some m, ¢ > d;(m) + 10~"™. Since
0x(j) + 1077 is a decreasing function in j, for some n > m, gi(n) = ¢ and
$0 q ¢ M. Thus )\ is a Dedekind cut equal to d;. Since )y is a separating
set, if 0 is a rational then J; may or may not be an element of A;. Thus,
we have not shown that A is an open cut. The proof that )\ is the desired
Dedekind cut when 0y (0) is negative or —0 is similar.

It remains to show that (2) implies WKLg. As in the preceding theorem,
we will use (2) to separate the ranges of disjoint functions. Let f and g be
injections such that for all m and n, f(m) # g(n). For the following, let [d]™
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denote a string of n copies of the digit d. Define a sequence (J;);cn of decimal
expansions by setting

[t ift <nAg(t) =k,
Sp(n) =< 10]"F ift<nA f(t) =k,
g otherwise.

Let (\;)ien be a sequence of Dedekind cuts such that for each i € N, §; = \;.
Then the set S = {i | % € \;} contains every element of the range of f and
no elements of the range of g. m

THEOREM 8 (RCA). The following are equivalent:

(1) ACAy.
(2) If (\i)ien is a sequence of Dedekind cuts, then there is a sequence
(03)ien of open cuts such that for each i € N, \; = o;.

Proof. First, assume (1) and let (\;);en be a sequence of Dedekind cuts.
For each i € N,if 3¢ € \; V¢’ € \; (¢’ < q), then let o; = \; —{q}. Otherwise,
let o; = \;. ACAq proves that the sequence (0;);cn exists, and the omission
of maxima guarantees that each o; is an open cut.

To prove the converse, we will use (2) to find the range of an injection
[9, Lemma II1.1.3]. Let f : NT — N be an injection. Define the sequence
(A\i)ien of Dedekind cuts by putting ¢ € Q in \; if and only if ¢ <0 or

g>0A 3t <1/q)(f(t) =1).
RCA( suffices to prove that the sequence (\);cn exists and that each \; is
a Dedekind cut. (Indeed, each \; is a closed lower Dedekind cut for some
rational.) By (2), there is a sequence (o;);en of open cuts satisfying o; =
A; for each @ € N. Since 3t (f(¢t) = k) if and only if 0 € oy, recursive
comprehension proves that the range of f exists. m

The remaining analysis of the conversions of the representations of se-
quences of reals consists of two easy corollaries to the preceding theorems.

COROLLARY 9 (RCAy). The following are equivalent:

(1) WKLy.

(2) If (0i)ien is a sequence of rapidly converging Cauchy sequences, then
there is a sequence (\;)ien of Dedekind cuts such that for all i € N,
0i = Ai-

Proof. To prove that (1) implies (2), concatenate Theorems 6 and 7.
Since every decimal expansion is a rapidly converging Cauchy sequence, (2)
above implies (2) of Theorem 7, so WKL follows by Theorem 7. m

COROLLARY 10 (RCAq). The following are equivalent:
(1) ACAy.
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(2) If (d;)ien is a sequence of decimal ezpansions, then there is a se-
quence (0;)ien of open cuts such that for all i € N, §; = o0;.

(3) If (0i)ien is a sequence of rapidly converging Cauchy sequences, then
there is a sequence (0;)icn of open cuts such that for all i € N,
Qi = 0j-

Proof. Since ACA( implies WKL, the proof of (3) from (1) follows from
a concatenation of Theorems 6, 7, and 8. Since every decimal expansion is a
rapidly converging Cauchy sequence, (2) is a special case of (3). It remains to
show that (2) implies (1). By Theorem 1, RCA( proves that every sequence of
Dedekind cuts can be converted to a sequence of decimal expansions, so (2)
above implies (2) of Theorem 8, and ACA follows by Theorem 8. (Theorem
6 of [4] includes a computable analysis counterexample corresponding to a
direct proof of (1) from (2).) m

We summarize the results of the preceding two sections in the following
table. Each table entry corresponds to a conversion from a sequence of the
row type to a sequence of the column type. Row and column labels are:

e o: rapidly converging Cauchy sequence,
e §: decimal expansion,

e \: Dedekind cut,

e (: open cut.

The conversion results are either provable in RCA( (as shown in §2), or
equivalent to the designated subsystem (as shown in this section).

from \to ‘ o 1 A o

0 RCA, WKL, WKLy ACA,
RCA, RCA, WKLy ACA,
RCAo RCAq RCAy ACAo
RCAo RCAq RCAys RCAp

Q > &

4. Related results. As noted in the reversal of Theorem 8, conversions
from Dedekind cuts to open cuts require ACAg, even for sequences consist-
ing only of rationals. On the other hand, conversions of purely irrational
sequences can be carried out in RCAg, as shown by the following theorem
and corollary.

THEOREM 11 (RCA). If (0i)ien is a sequence of rapidly converging
Cauchy sequences each of which converges to an irrational number, then
there is a sequence (0;)ien of open cuts such that for all i € N, 0; = ;.

Proof. Given the sequence (p;);en, determine if ¢ € Q is in oy, as follows.
Since gy is irrational, g # ¢. Find n so large that gg(n) — 27" > ¢ or
or(n) +27™ < q. If the first inequality holds, include ¢ in oy. If the second
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holds then exclude ¢ from oj. RCA suffices to prove that (o;);cn exists, each
0; is an open cut, and for each i, 0; = 0;. =

COROLLARY 12 (RCA(). Any sequence of irrationals in any of the four
representations can be converted to a sequence in any other representation.

Proof. Immediate from Corollary 2 and Theorem 11. m

In general, separating rationals and irrationals requires ACA( as shown
by the following theorem and corollary.

THEOREM 13 (RCAg). The following are equivalent:

(1) ACAy.
(2) If (04i)ien is a sequence of open cuts then the set {i € N | o; € Q}
exists.

Proof. First, assume (1) and suppose (0;);en is a sequence of open cuts.
Note that o; € Q if and only if

J9eQVe' €Q(d ¢ —q=<4d)
Since each rational can be encoded by a natural number, this formula is
arithmetical. Thus, the desired set exists by arithmetical comprehension.

To prove that (2) implies (1), assume RCA( and let f be an injection.
Include ¢ in oy if and only if

e 3k (g < —27FAVE<EK (f(t) #1)), or

e It (f(t)=iNng< —27m).

RCA suffices to prove that (o;);cn exists, that each o; is an open cut, and
that o; = 0 if ¢ ¢ Range(f) and o; is irrational otherwise. The complement

of {i € N| o; € Q} is the range of f, so an application of [9, Lemma II1.1.3]
yields ACAg. =

COROLLARY 14 (RCA(). For any of the four representations of reals, the
following are equivalent.

(1) ACAy.
(2) If (1i)ien is a sequence of reals in the specified representation, then
the set {i e N | 1, € Q} eists.

Proof. To prove that (1) implies (2), assume ACAq and let (7;);en be a
sequence of reals. Apply results from Section 3 to convert (7;);eny to open
cuts. An application of Theorem 13 yields the desired set.

To prove the converse, assume RCA( and suppose (2) holds. By Corol-
lary 2, RCA( proves that (2) above implies (2) of Theorem 13. ACA( follows
from Theorem 13.

In Theorems 3 and 5 of [4], Mostowski analyzed change of basis for se-
quences of decimal expansions in a computable analysis setting. Theorems 16
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and 17 give the reverse mathematical analogs of his results. The following
terminology is useful in the proofs. A base b expansion is defined in the same
manner as a decimal expansion, using b in place of 10 and integers less than
b as digits. A base b expansion is terminating if there is some point after
which every digit is zero or every digit is b — 1. By the definition of equality
between rapidly converging Cauchy sequences, this means that a terminat-
ing base b expansion is always equal to (but not necessarily the same as) an
expansion ending in zeros. The next lemma shows that termination may or
may not be conserved under change of basis. For natural numbers a and b,
we will use the notation a|b to denote “a divides b” and atb to denote “a
does not divide b.”

LEMMA 15 (RCAg). For all b and c, there is an n such that ¢|b™ if and
only if every real with a terminating base ¢ expansion has a terminating base
b expansion. In particular, if for all n we have c{b™, then the base b expansion
of 1/c is nonterminating.

Proof. Suppose that for some ¢ and n, tc = b". Let o be a terminating
base ¢ expansion. We may assume that ¢ terminates in zeros, so for some j,
J
= (0) + sign(c(0)) > &
o = 0(0) + sign(o( r
i=1
where 0 < g; < ¢ — 1 for each 7 < j. Since
g tiO'Z' _ tiO'Z'
ERTE R T

we have
J o4
o = 0(0) + sign(o(0)) Z bTUZ,
i=1

S0 o can be expressed as a terminating base b expansion.

To prove the converse, suppose that for every value of n, c¢tb™. Suppose
by way of contradiction that 1/c has a terminating base b expansion. Then
we may write

for some t € N. Thus ¢t = b/, contradicting our divisibility assumption.
Thus, 1/c has no terminating base b expansion. =

THEOREM 16 (RCAg). If ¢|b™ for some n, then for every sequence ((3;)icn
of base b expansions there is a sequence (7;)ien of base ¢ expansions such that
forall i e N, §; = ;.
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Proof. This argument is essentially a formalization of the proof of The-
orem 3 of [4]. Suppose c¢|b". By Lemma 15, whenever v = [ where v is
a base ¢ expansion and ( is a base b expansion, if v terminates then so
does (3.

Consider a single base b expansion; call it 3. As usual, let §(k) de-
note the result of truncating 3 after the first k& digits to the right of the
decimal point. Let (8(k)). denote the base ¢ expansion of (k). Suppose
by way of contradiction that there is a j such that for all &, (3(k)). and
(B(k) + b~F). disagree somewhere in the first j digits. In this case there
are two base ¢ expansions 7y and 7; such that 6 = 79 = 1 and 7 and
~v1 disagree somewhere in the first j digits. This implies that vy and 1
must be terminating. Let « denote the element of {79,v1} that terminates
in zeros. Since § = v and 7 terminates, 0§ must terminate also, and we
may assume that § ends in zeros. Choose m so large that m > j and
for all & > m, B(k) = B(m) and (k) = ~(m). Choose p > m such
that for all k& > p, b% < ¢ ™~ L. Thus when k > p, (B(k))e = v(m),
(B(k) +b7%). < y(m) + ¢ ™1, and (B(k)). must agree with (3(k) +b=F),
on the first j digits, contradicting our assumption. Thus for every j there is
a k such that (8(k)). and (B(k) + b=*). agree on the first j digits. Further-
more, for any m greater than such k, (5(m)). and (8(k)). agree on the first
Jj digits.

Now we can present the algorithm for converting (53;)ien to (7;)ien. For
any i and j, find a k so large that (3;(k)). and (B;(k) 4+ b~"). agree on the
first j digits. Let v;(j) consist of those j digits. RCA suffices to prove that
(7i)ien exists and is a sequence of base ¢ expansions, and that 3; = ~; for
alli e N.

THEOREM 17 (RCAg). If for all n we have c1b"™, then the following are
equivalent:

(1) WKLo.
(2) For every sequence (3;)icn of base b expansions there is a sequence
(vi)ien of base ¢ expansions such that for all i € N, 5; = ~;.

Proof. Suppose that for all n, ¢ does not divide b”. Since base b expan-
sions are rapidly converging Cauchy sequences, and 10 can be replaced by ¢
in the proof of Theorem 6, the statement that (1) implies (2) can be proved
by adapting the proof of Theorem 6.

The proof of the converse is essentially a formalization of the construction
in Theorem 5 of [4]. By Lemma 15, let 8 be the nonterminating base b
expansion of 1/c. Since 3 does not terminate, after any given point in the
expansion a digit greater than 0 must occur and a digit less than b — 1 must
occur. For any k, let ny > k be the first location to the right of the kth
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decimal place in # that has a value less than b — 1 and define
B(j) for j < ng,
Bi(G) = b-1 forj=mny
0 for j > ny.
Note that ﬁ,l > 1/c. Similarly, when nj > k is the first location to the right
of the kth decimal place in § that has a value greater than 0, define

ﬁ;ﬁ(]) _ {B(g) for j < nyg,

0 for j > ng.
Note that @i < 1/c. Let f and g be functions with disjoint ranges, and define
(Bi)ien by

j) ift <jand f(t)
j) ift <jandg(t) =1,
B(j)  otherwise.

Apply (2) to find a sequence (7;)ien of base ¢ expansions such that §; = ;
for all i € N. The set S = {i | 7;(1) > 1/c} is a separating set for the ranges
of fand g. m

i

Bl
Bi(j) = 8K

We close by observing that many of the reversals of the results on se-
quences can be converted to arguments in constructive analysis for negative
statements about single reals. As an example, consider the proof of (2)=(1)
in Theorem 17. To increase the concreteness of the discussion, suppose b = 2
and ¢ = 10. Thus 3 is the base 2 expansion of 1/10, that is, 3 = .0001100
in standard base 2 notation. Let P denote a formal theory that is assumed
to be consistent and that has proofs that can be Godel numbered. (A rea-
sonable choice would be Peano arithmetic.) Let S denote a statement whose
status is completely open. That is, S might or might not be provable in P
and —S might or might not be provable in P. (At the moment, S could be
the Goldbach conjecture.) Define 3y by setting

81(j) if some ¢ < j encodes a proof of S in P,
Bo(j) = ﬁtl(j) if some ¢ < j encodes a proof of -5 in P,
B(j)  otherwise.

0o is a constructive base 2 expansion. Note that if v = 3y and + is a base 10
expansion, then (1) > 1/10 implies there is no proof of the negation of S in
P and (1) < 1/10 implies there is no proof of S in P. Since we lack sufficient
information about the provability of S to determine the value of (1), there
is no constructive base 10 expansion that is equal to Gy. A constructivist
might summarize by saying that some base 2 expansions cannot be converted
to base 10 expansions. For more on constructive representations of reals,
see [10].
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