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Abstract. This article surveys theorems of reverse mathematics concerning the

comparability, addition, multiplication and exponentiation of countable well orderings.

In [13], Simpson points out that ATR0 is “strong enough to accommodate a
good theory of countable ordinal numbers, encoded by countable well order-
ings.” This paper provides a substantial body of empirical evidence supporting
Simpson’s claim. With a few very interesting exceptions, most theorems of or-
dinal arithmetic are provable in RCA0 or are equivalent to ATR0. Consequently,
up to equivalence over RCA0, Friedman’s early result [2] on the equivalence of
ATR0 and comparability of well orderings encapsulates most of countable or-
dinal arithmetic.

This paper is divided into sections on definitions and alternative definitions
of well orderings, comparability and upper bounds, addition, multiplication,
exponentiation, and other topics. The last section addresses Cantor’s normal
form theorem, transfinite induction schemes, and indecomposable well order-
ings, and concludes with a list of some omitted topics. Whenever possible,
references to proofs are provided, rather than the actual proofs. Throughout,
arbitrary sets are denoted by capital roman letters, but well ordered sets are
denoted by lower-case greek letters. This notation emphasizes the parallels
between the encoded theory and the usual development of ordinal arithmetic.

§1. Definitions of well orderings. First, we will define linear orderings
and well orderings.

Definition. (RCA0) Let X be a set of pairs. We will write x ≤ y if (x, y) ∈
X. We say that X is a (countable) linear ordering, denoted LO(X), if

1. x ≤ y → (x ≤ x ∧ y ≤ y),
2. (x ≤ y ∧ y ≤ z)→ x ≤ z,
3. (x ≤ y ∧ y ≤ x)→ x = y, and
4. (x ≤ x ∧ y ≤ y)→ (x ≤ y ∨ y ≤ x).
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The field of X is the set {x ∈ N | x ≤ x}. We say that X is a (countable)
well ordering, denoted WO(X), if for every nonempty Y ⊂ field(X) there is
an element y0 ∈ Y such that y ∈ Y implies y0 ≤ y. That is, WO(X) if every
nonempty subset of X has a least element. A well ordered set with a largest
element is called a successor. A well ordered set with no largest element is
called a limit.

Some papers (for example [3]) define well orderings as linear orderings with
no infinite descending sequences. This definition is equivalent to the preceding
one, and the equivalence is provable in RCA0.

Theorem 1. (RCA0) Let X be a linear ordering. The following are equiva-
lent:

1. X is well ordered. That is, every nonempty subset of X has a least
element.

2. X contains no infinite descending sequences.

Proof. Theorem 2 of [5]. a
Cantor’s original definition of “well ordered aggregate” was closer to clause

3 of the following theorem. His definition is equivalent to the usual one, but
the proof of the equivalence requires ACA0.

Theorem 2. (RCA0) The following are equivalent:

1. ACA0.
2. If α is a well ordering, then every subset of α with an upper bound has a

least upper bound.
3. Suppose X is a linear ordering. Then X is well ordered if and only if

every subset of X with a strict upper bound has a least strict upper bound.

Proof. The equivalence of clause 2 and ACA0 is Theorem 3 of [5]. The
equivalence of clause 3 and ACA0 is shown in Corollary 6 of [5]. a

§2. Comparability and upper bounds. In this section, after presenting
a long list of equivalent versions of comparability, we will look at descending
sequences, strict inequality, comparisons to ω, suprema, and bounds for Σ1

1

classes. We begin by defining two forms of comparability of well orderings.

Definition. (RCA0) If α and β are well orderings, then α is strongly less
than or equal to β, denoted α ≤s β, if there is an order preserving map of α
onto an initial segment of β. If the initial segment is β itself, we also write
α ≡s β. If α + 1 ≤s β, then we write α <s β.

Definition. (RCA0) If α and β are well orderings, then α is weakly less
than or equal to β, denoted α ≤w β, if there is an order preserving map of α
into β. If α ≤w β and β ≤w α, then we write α ≡w β. If α + 1 ≤w β, then we
write α <w β.
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Sometimes, the same result will hold for both ≤s and ≤w. We will drop
the subscripts and write ≤ and < whenever statements hold for both forms of
comparability.

A few properties of ≤s and ≤w are provable in RCA0. For example, RCA0 can
prove that ≤s and ≤w are both transitive relations. Here is another example.

Theorem 3. (RCA0) If β is a proper initial segment of a well ordering α,
then α 6≤w β.

Proof. Lemma 2.3 of [3]. a
Additionally, the fact that α ≤s β implies α ≤w β is provable in RCA0,

although the converse requires ATR0, as shown in the next theorem. The
next theorem also shows the equivalence of a wide variety of statements on
comparability. The terminology has all been defined with one exception. A
well ordering α is indecomposable if for every final segment β = {a ∈ α | b < a}
we have α ≤w β. More results about indecomposable well orderings appear in
Section 6.

Theorem 4. (RCA0) Suppose that α and β denote well orderings and that
〈αi|i ∈ N〉 denotes a sequence of well orderings. Then (the universal closures
of) the following are equivalent:

1. ATR0.
2. (Strong comparability of well orderings.) α ≤s β or β ≤s α.
3. (Weak comparability of well orderings.) α ≤w β or β ≤w α.
4. (Weak comparability of indecomposable well orderings.) If α and β are

indecomposable, then α ≤w β or β ≤w α.
5. (The class of well orderings has no infinite antichains.) For some distinct

i and j, αi ≤w αj.
6. For some distinct i and j, αi ≤s αj.
7. (WO is wqo: the class of well orderings is well-quasi-ordered.) For some

i < j, αi ≤w αj.
8. For some i < j, αi ≤s αj.
9. α ≤w β implies α ≤s β.

10. If α ≤w β and β ≤w α, then α ≡s β.
11. If X ⊂ α, then X ≤s α.

Proof. The equivalence of ATR0 and Clause 2 was announced by Friedman
in [2]. The result appears as Theorem V.6.8 in Simpson’s book [13]. Clause
3 follows from Theorem 3.21 of [3] and clause 4 follows from Theorem 4.4 of
[6]. Clauses 5 and 7 are due to Shore [11]. The much easier proofs for 6 and 8
appear as Theorem 5.4 of [3]. The equivalence of clause 9 is Theorem 2 of [7].
Clause 10 follows from Theorem 5.2 of [3] and clause 11 follows from Theorem
2.9 of [3]. a

Using clause 7 of the preceding theorem, given any sequence of well orderings
(comparable or not) one can locate a pair that is ordered in accordance with
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their subscripts. This is strictly stronger than asserting that there is no infi-
nite strictly descending sequence of well orderings, as shown by the following
theorem.

Theorem 5. (ACA0) The following are equivalent:
1. Σ1

1 − AC0.
2. There is no sequence 〈αi|i ∈ N〉 of well orderings such that αi+1 <w αi

for every i in N.
3. There is no sequence 〈αi|i ∈ N〉 of indecomposable well orderings such

that αi+1 <w αi for every i in N.

Proof. Theorem 4.2 of [3]. a
In the finite case, the preceding theorem becomes an extended version of

transitivity. In the following, (Y )k = {j | (j, k) ∈ Y }.
Theorem 6. (ACA0) The following are equivalent:
1. (Bounded Σ1

1 − AC0) For any Σ1
1 formula ψ and any b,

(∀k < b∃X ψ(k, X))→ (∃Y ∀k < b ψ(k, (Y )k)) .
2. Let 〈αi|i ≤ b〉 be a sequence of well orderings such that for all i < b,

αi <w αi+1. Then α0 <w αb.
3. Let 〈αi|i ≤ b〉 be a sequence of indecomposable well orderings such that

for all i < b, αi <w αi+1. Then α0 <w αb.

Proof. Theorem 4.1 of [3]. a
In the preceding, we used α < β to denote α + 1 ≤ β. Proving that

α ≤ β ∧ α 6≡ β implies this form of inequality requires either ACA0 (for strong
comparability) or ATR0 (for weak comparability). In both cases, the converse
implication is provable in RCA0 using Theorem 3.

Theorem 7. (RCA0) The following are equivalent:
1. ACA0.
2. If α and β are well orderings with α ≤s β and β 6≤s α, then α <s β.

Proof. Theorem 2 of [8]. a
Theorem 8. (RCA0) The following are equivalent:
1. ATR0.
2. If α and β are well orderings such that α ≤w β and β 6≤w α, then α <w β.

Proof. Theorem 5 of [8]. a
We will use ω to denote N with the usual ordering. Restricting statements

about comparability to a special case for ω often reduces the strength of the
statement from ATR0 to ACA0. In the following theorem, compare clause 2 to
clause 10 of Theorem 4 and clause 3 to clause 2 of Theorem 8.

Theorem 9. (RCA0) The following are equivalent:
1. ACA0.
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2. If α is a well ordering such that ω ≤w α and α ≤w ω, then α ≡s ω.
3. If β is a well ordering such that ω ≤w β and β 6≤w ω, then ω <w β.

Proof. Clause 2 is Theorem 5.3 of [3]. Clause 3 is Theorem 6 of [8]. a
We conclude the section with two results on upper bounds for collections

of ordinals. The first result supplies a frequently useful upper bound on Σ1
1

classes of well orderings.

Theorem 10. (RCA0) The following are equivalent:
1. ATR0.
2. For any Σ1

1 formula ψ(X) we have
∀X (ψ(X)→WO(X))→ ∃α (WO(α) ∧ ∀X(ψ(X)→ X ≤s α)) .

Proof. Theorem V.6.9 of [13]. a
ATR0 is necessary and sufficient to prove the existence of unique suprema

of sequences of ordinals. The following theorem holds for both ≤s and ≤w.

Theorem 11. (RCA0) The following are equivalent:
1. ATR0.
2. Suppose 〈αx | x ∈ β〉 is a well ordered sequence of well orderings. Then

sup〈αx | x ∈ β〉 exists. That is, there is a well ordering α unique up to
order isomorphism satisfying
• ∀x ∈ β(αx ≤ α), and
• ∀γ(γ < α→ ∃x ∈ β(αx 6≤ γ)).

Proof. Theorem 7 of [5]. a

§3. Addition. This section explores the properties of ordinal addition.
The section begins with a definition of addition and a verification that ad-
dition preserves well orderings. Then two theorems describing the interaction
of addition and comparability are presented. The section concludes with two
theorems on triangular numbers.

Definition. Let 〈αb | b ∈ β〉 be a well ordered sequence of well orderings.
The notation

∑
b∈β αb denotes the set {(b, a) | b ∈ β ∧ a ∈ αb} ordered by the

relation (b0, a0) < (b1, a1) if and only if b0 < b1 or both b0 = b1 and a0 < a1.
Finite sums defined in this fashion may be denoted by α0 + · · ·+ αk.

Theorem 12. (RCA0) If 〈αb | b ∈ β〉 is a well ordered sequence of well
orderings, then

∑
b∈β αb is well ordered.

Proof. Let 〈αb | b ∈ β〉 be a well ordered sequence of well orderings,
and construct

∑
b∈β αb as in the definition. Suppose that

∑
b∈β αb is not well

ordered. By Theorem 1, we can find an infinite descending sequence 〈xi | i ∈ N〉
in the sum. For each i, let xi = (bi, ai). If the sequence 〈bi | i ∈ N〉 has no
least element, then β is not well ordered, yielding a contradiction. Thus, we
may select an i such that for all j > i, bj = bi. In this case, 〈aj | j ≥ i〉
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contains an infinite descending sequence in αbi
, yielding another contradiction

and completing the proof. a
Weak comparability and strong comparability behave differently with re-

spect to addition, as shown by the next two theorems.

Theorem 13. (RCA0) If 〈αb | b ∈ β〉 and 〈γb | b ∈ β〉 are well ordered se-
quences of well orderings, and 〈fb | b ∈ β〉 is a sequence of functions witnessing
that αb ≤w γb for each b ∈ β, then

∑
b∈β αb ≤w

∑
b∈β γb. In particular, if

α0 ≤w γ0 and α1 ≤w γ1 are well orderings, then α0 + α1 ≤w γ0 + γ1.

Proof. The order preserving injection witnessing
∑

b∈β αb ≤w

∑
b∈β γb can

be directly constructed from those witnessing αb ≤w γb for each b. a
Theorem 14. (RCA0) The following are equivalent:
1. ATR0.
2. If 〈αb | b ∈ β〉 and 〈γb | b ∈ β〉 are well ordered sequences of well orderings

such that αb ≤s γb for each b ∈ β, then
∑

b∈β αb ≤s

∑
b∈β γb.

3. If α0 ≤s γ0 and α1 ≤s γ1 are well orderings, then α0 + α1 ≤s γ0 + γ1.

Proof. First we will prove clause 2 using ATR0. Let 〈αb | b ∈ β〉 and
〈γb | b ∈ β〉 be well ordered sequences of well orderings such that αb ≤s γb for
each b ∈ β. As a notational convenience, let α =

∑
b∈β αb and γ =

∑
b∈β γb.

By Theorem 12, both α and γ are well ordered. By strong comparability of
well orderings (Theorem 4 clause 2), either α ≤s γ or γ ≤s α. If α ≤s γ,
then we are done. Suppose that f witnesses that γ ≤s α. If f maps γ onto a
proper initial segment of α, then there must be a least b ∈ β such that f maps
the least element of γb into αc where c < b. This implies that γc + 1 ≤w αc,
contradicting the claim αc ≤s γc. Thus f must map γ onto all of α, witnessing
α ≡s γ and therefore α ≤s γ.

Since clause 3 is a special case of clause 2, we can complete the proof of
the theorem by using clause 3 to derive ATR0. Toward this end, let β and δ
be well orderings. RCA0 proves that β ≤s β + δ and β ≤s β. By clause 3,
β +β ≤s β + δ +β. The map witnessing this relationship must either map the
second copy of β in β + β onto an initial segment of δ, or can be inverted to
map δ onto an initial segment of a copy of β. Thus we have β ≤s δ or δ ≤s β,
and by clause 2 of Theorem 4, ATR0 follows. a

We conclude this section with two theorems from [5] on transfinite triangular
numbers and their generalizations. The statements of these theorems make use
of ordinal exponentiation, which is defined in section 5.

Theorem 15. For each positive natural number n, RCA0 proves∑
α<ωn

α ≡s ω2n−1.

Proof. Theorem 8 of [5]. a
Theorem 16. (RCA0) The following are equivalent:
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1. ATR0.
2. (γ-lemma) Suppose that 〈αb | b ∈ ωγ〉 is a well ordered sequence of well

orderings such that b < b′ implies αb′ + 1 6≤ αb. Then
• For all b ∈ ωγ , αbω

γ ≤
∑

b∈ωγ αb, and
• If δ <

∑
b∈ωγ αb, then there is an b ∈ ωγ such that αbω

γ 6≤ δ.

Proof. Theorem 9 of [5]. a
The statement of the preceding theorem is somewhat complicated by the

fact that RCA0 is not sufficiently strong to prove that ωγ is well ordered when
γ is well ordered. For more on this, see Theorem 31.

§4. Multiplication. This section begins with a definition of ordinal mul-
tiplication and verification that products are well ordered and multiplication
is associative. This is followed by results on comparability and multiplication,
distributive laws, division algorithms, right factors and prime factors.

Definition. If α and β are well orderings, the product αβ is the set
{(a, b) | a ∈ α ∧ b ∈ β}, ordered by the relation (a1, b1) < (a2, b2) if and
only if (b1 < b2) ∨ (b1 = b2 ∧ a1 < a2).

Theorem 17. (RCA0) Suppose that α, β and γ are well ordered. Then αβ
is well ordered, and α(βγ) ≡s (αβ)γ.

Proof. Working in RCA0, one can show that if αβ contains an infinite
descending sequence, then either α or β must contain an infinite descending
sequence. The associative law is proved by direct construction of a bijection
between the orderings. a

As with addition, weak comparability and strong comparability interact in
different fashions with multiplication.

Theorem 18. (RCA0) If α0, α1, β0, and β1 are well orderings such that
α0 ≤w α1 and β0 ≤w β1, then α0β0 ≤w α1β1.

Proof. Lemma 6 of [7]. a
Theorem 19. (RCA0) The following are equivalent:
1. ATR0.
2. If α0, α1, β0, and β1 are well orderings such that α0 ≤s α1 and β0 ≤s β1,

then α0β0 ≤s α1β1.

Proof. Theorem 7 of [7]. a
In ordinal arithmetic, multiplication on the right by a successor ordinal

preserves strict inequalities. This statement varies in strength depending on
the form of comparability used. Recall that a well ordering with a largest
element is called a successor.

Theorem 20. (RCA0) If α0, α1 and β are wellorderings, β is a successor,
and α0 <w α1, then (α0β) <w α1β.
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Proof. Lemma 11 of [7]. a

Theorem 21. (RCA0) The following are equivalent:
1. ATR0.
2. If α0, α1 and β are well orderings, β is a successor, and α0 <s α1, then

(α0β) <s α1β.

Proof. Theorem 12 of [7]. a
The statements in the following omnibus theorem can be proved in RCA0

for both types of comparability.

Theorem 22. (RCA0) The following statements hold for all well orderings.
1. If β 6= 0, then α ≤ αβ. Furthermore, (αβ) + 1 £ α.
2. If α 6= 0 and αβ0 ≡ αβ1, then β0 ≡ β1.
3. If β0 < β1, then αβ0 ≤ αβ1.
4. If (αβ0) < αβ1, then β0 < β1.
5. If (α0β) < α1β, then α0 < α1.
6. If β is a successor and α0β ≡ α1β, then α0 ≡ α1.

The left distributive law for ordinal multiplication over ordinal addition is
provable in RCA0. The corresponding right distributive law fails. Sherman’s
inequality, which is a weak version of the right distributive law is equivalent
to ATR0. These results hold for both forms of comparability and are stated as
the next two theorems.

Theorem 23. (RCA0) For well orderings α, β, and γ, α(β +γ) ≡ αβ +αγ.

Proof. The bijection can be constructed using only recursive comprehen-
sion and the definitions of the arithmetical operations. a

Theorem 24. (RCA0) The following are equivalent:
1. ATR0.
2. (Sherman’s Inequality) If α, β, and γ are well orderings, then

(α + β)γ ≤ αγ + βγ.

Proof. Theorem 5.4 of [6]. a
Some special instances of the right distributive law do hold. The following

example is useful in manipulating ordinals expressed in Cantor normal form.
Ordinal exponentiation is defined in the next section.

Theorem 25. (RCA0) If m0, m1, ...mk > 0, β > 0 is a well ordering, and
α0, α1, ...αk are initial segments of a well ordering α that satisfy αi+1 <s αi

for each i < k, then

(ωα0m0 + ωα1m1 + · · ·+ ωαkmk)ωβ ≡s ωα0+β .

Proof. Lemma 3 of [9]. a
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The next two theorems give three versions of the division algorithm. The
version in the first theorem is a strong comparability analog of clause 2 in the
second theorem.

Theorem 26. (RCA0) If α, β and γ are well orderings satisfying γ <s αβ,
then there are well orderings α1 and β1 such that α1 <s α, β1 ≤s β, and
γ ≡s αβ1 + α1.

Proof. Lemma 3 of [7]. a
The next theorem holds with either form of comparability in the third clause.

Theorem 27. (RCA0) The following are equivalent:

1. ATR0.
2. If α, β and γ are well orderings satisfying γ <w αβ, then there are well

orderings α1 and β1 satisfying α1 <w α, β1 ≤w β, and γ ≡w αβ1 + α1.
3. If α and γ are well orderings, then there are well orderings α1 and β such

that α1 < α and γ ≡ αβ + α1.

Proof. Theorems 4 and 5 of [7]. a
This section concludes with some material on right factors. First we will

consider the strength of the assertion that a right factor of a product is no larger
than the product. The strength here depends on the form of comparability
used in the statement.

Theorem 28. (RCA0) If α 6= 0 and β 6= 0 are well orderings, then β ≤w αβ.

Proof. Lemma 8 of [7]. a

Theorem 29. (RCA0) The following are equivalent:

1. ATR0.
2. If α 6= 0 and β 6= 0 are well orderings, then β ≤s αβ.

Proof. Theorem 9 of [7]. a
A ordinal α is said to be prime if whenever α = λρ, either ρ = 1 or ρ = α.

The notion of prime can be formalized using either weak or strong compara-
bility. Using either formalization, the following theorem holds.

Theorem 30. (RCA0) The following are equivalent:

1. ATR0.
2. Every well ordering has a prime right factor. That is, if α is a well

ordering, then there are well orderings λ and ρ such that α ≡ λρ and ρ
is prime.

3. If α is a well ordering, then for some k ∈ N, there are prime well orderings
ρ1, ρ2...ρk such that α ≡ ρkρk−1 · · · ρ1.

Proof. Theorem 6 and Corollary 7 of [9]. a
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§5. Exponentiation. This section begins with the definition of ordinal
exponentiation, discusses closure and basic properties of exponentiation, and
concludes with a theorem on the existence of ordinal logarithms.

Definition. Let α and β be well orderings. The set exp(α, β) is the col-
lection of all finite sequences of the form

〈(b0, a0), (b1, a1), . . . , (bn, an)〉
such that (1) for all i ≤ n, bi ∈ β and 0 6= ai ∈ α, and (2) whenever i < j ≤ n,
we have bi > bj in the order on β. We define αβ as the ordering with field
exp(α, β), ordered lexicographically. In particular, suppose that σ and τ are
distinct elements of exp(α, β). If σ extends τ , then σ > τ . If j is the least
integer such that (bj , aj) = σ(j) 6= τ(j) = (b′j , a

′
j) and either bj > b′j or both

bj = b′j and aj > a′j , then σ > τ . Otherwise τ > σ.

Intuitively, if we identify each element of α and β with the initial segment
lying below it, the element 〈(b0, a0), (b1, a1), . . . , (bn, an)〉 corresponds to the
ordinal αb0a0 + · · ·+ αbnan. The ordering on the sequences is the same as the
ordering on the corresponding ordinals.

Unlike the case with ordinal addition and multiplication, RCA0 does not
suffice to prove that αβ is well ordered if α and β are.

Theorem 31. (RCA0) The following are equivalent:
1. ACA0.
2. If α and β are well ordered, then so is αβ.
3. If α is well ordered, then so is 2α.

Proof. This result is included in a larger equivalence theorem proved by
Girard in [4]. For a direct proof, see Theorem 2.6 of [6]. a

RCA0 suffices to prove numerous basic properties of exponentiation. The
next theorem holds with either strong or weak of comparability.

Theorem 32. (RCA0) Suppose that α, β and γ are well orderings. The
following hold:

1. αβ+γ ≡ αβαγ .
2. (αβ)γ ≡ α(βγ).
3. α ≤ β implies αγ ≤ βγ .
4. α ≤ β implies γα ≤ γβ.
5. 2ω ≡ ω.
6. ωα ≡ 2(ωα).

Proof. Theorems 2.3, 2.4, and 2.5 of [6] a
The following useful partial converse to clause 4 of Theorem 32 is provable

in ACA0.

Theorem 33. (ACA0) If α and β are well orderings and ωα ≤w ωβ, then
α ≤w β.
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Proof. Lemma 4.3 of [6] a
To conclude this section, we list two results on the existence and uniqueness

of logarithms. The next result holds with both strong and weak comparability.

Theorem 34. (RCA0) The following are equivalent:
1. ATR0.
2. (Existence of logarithms) If α > 1 and β are well orderings, then there

is a well ordering γ such that αγ ≤ β < αγ+1.

Proof. Theorem 2.7 of [6]. a
Theorem 35. (ATR0) (Uniqueness of logarithms) If α, β, γ and δ are well

orderings such that αγ ≤w β <w αγ+1, αδ ≤w β <w αδ+1, then γ ≡s δ.

Proof. Theorem 2.8 of [6]. a

§6. Other topics. This section contains formalized versions of Cantor’s
normal form theorem, several results about indecomposable well orderings,
and some transfinite induction schemes. In the last paragraph, we list some
related topics in reverse mathematics which were not included in this survey.
We will begin with two normal form results.

Theorem 36. (RCA0) Let α > 1 and β be well orderings. Fix an element
of αβ, x0 = 〈(b0, a0), . . . , (bn, an)〉. Let µ = {x ∈ αβ | x < x0}. For each
i ≤ n, let βi = {b ∈ β | b < bi} and αi = {a ∈ α | a < ai}. Then

µ ≡s αβ0α0 + αβ1α1 + · · ·+ αβnαn.

Proof. Lemma 5.1 of [6]. a
The next theorem holds with both forms of comparability. Recall that the

notation α < β is used to abbreviate α + 1 ≤ β.

Theorem 37. (RCA0) The following are equivalent:
1. ATR0.
2. If α > 1 and β are well orderings then there are finite sequences of well

orderings γ0 > γ1 > · · · > γn and δ0, δ1, . . . , δn such that 0 < δi < α for
each i ≤ n and

β ≡ αγ0δ0 + αγ1δ1 + · · ·+ αγnδn.

Furthermore, this representation is unique in the following sense. If
αγ′0δ′0 +αγ′1δ′1 + · · ·+αγ′mδ′m is a similar representation of β, then m = n
and for every i, γ′i ≡ γi and δ′i ≡ δi.

3. (Cantor’s normal form theorem) If β is a well ordering then there is a
finite sequence γ0 > γ1 > · · · > γn of well orderings and a finite collection
d0, . . . dn of positive integers such that

β ≡ ωγ0d0 + · · ·+ ωγndn.

Proof. Theorem 5.2 of [6]. a
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Recall that a well ordering α is indecomposable if for every final segment β of
α, we have α ≤w β. The next theorem lists useful properties of indecomposable
well orderings that are provable in RCA0. Clause 1 is a particularly handy fact.
Note that in clause 5, the hypothesis must include the requirement that ωα is
well ordered. For some well ordered sets α, ACA0 may be required to prove
that ωα is well ordered, as shown in Theorem 31.

Theorem 38. (RCA0) Suppose that α, β, and γ are well orderings.

1. If α is indecomposable and α <w β + γ, then α ≤w β or α <w γ.
2. If α ≡w β, then α is indecomposable if and only if β is indecomposable.
3. If αβ ≡w γ then γ is indecomposable if and only if β is indecomposable.
4. If β is indecomposable and α <w β, then αω ≤w β.
5. If ωα is well ordered, then it is indecomposable.

Proof. Clause 1 is Lemma 3.3 of [3]. Clauses 2 through 5 are Theorems
3.2 through 3.5 of [6]. a

Finally, we turn our attention to a few transfinite induction schemes. Let
ATI0 denote the scheme

[∀x ∈ α(∀y ∈ α(y < x→ ψ(y))→ ψ(x))]→ ∀x ∈ α ψ(x),

where ψ(x) is an arithmetical formula and α is a well ordering. This scheme
can be modified by restricting the complexity of ψ(x). For example, Σ0

1 − TI0
denotes ATI0 with ψ(x) restricted to Σ0

1 formulas. Similarly, let Π0
1 − TLE0

denote the transfinite least element scheme

[∃x ∈ α ψ(x)]→ ∃x ∈ α(ψ(x) ∧ ∀y ∈ α(y < x→ ¬ψ(y)))

where α is a well ordering and ψ(x) is Π0
1. Schema for Π0

j−TLE0 and Σ0
j−TLE0

are defined similarly. We have two theorems relating these schemes.

Theorem 39. RCA0 proves Π0
1 − TI0 and Σ0

1 − TLE0.

Proof. Lemma 6 of [10]. a

Theorem 40. For j ≥ 2 and k ≥ 1, RCA0 proves that the following are
equivalent:

1. ACA0.
2. ATI0.
3. Σ0

k − TI0.
4. Π0

k − TLE0.
5. Π0

j − TI0.
6. Σ0

j − TLE0.

Proof. Simpson proves that ACA0 implies ATI0 in Lemma V.2.1 of [13].
The least element schemes can be deduced from ATI0 by the usual arguments.
Corollary 3 and Corollary 4 of [8] provide the reversals. a
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This survey only addresses well orderings and the formalized operations
of ordinal arithmetic. It does not include references to a substantial body
of literature related to this topic. For example, the formalization of ordinal
notations in reverse mathematics, proof theoretic ordinals for the subsystems,
and various applications of ordinal arithmetic to algebra, analysis, topology,
graph theory and quasi-ordering theory have all been omitted. As always, [13]
is strongly recommended as a source for further reading and references.

The interested reader will be able to discover numerous open questions on
the reverse mathematics of ordinal arithmetic. Most of the results in this
survey were motivated by Cantor’s introductory articles [1]. Many topics in
Chapter XIV of Sierpiński’s book [12] could be formalized in second order
arithmetic and analyzed. Sometimes even a single exercise can motivate a
substantial number of new results.
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