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Abstract

This paper contains a corrected proof that the statement “every non-
empty closed subset of a compact complete separable metric space is sep-
arably closed” implies the arithmetical comprehension axiom of reverse
mathematics.

The result described in the abstract appears as part of Theorem 3.3 of [2]. It
is also included in [1] as part of the proof of Theorem 1.15 and in the statement
of Theorem 3.12. Professor Brown generously assisted in checking the details of
this new corrected proof.

For a comprehensive development of separable metric space theory in reverse
mathematics, [4] is an excellent resource. The subsystems referred to below
are RCA0, which includes recursive comprehension, and ACA0, which includes
arithmetical comprehension. In RCA0 it is useful to distinguish between closed
sets and separably closed sets. Closed sets are complements of unions of open
balls, and are encoded by the codes for their complements. Separably closed
sets are closures of countable sets of points, and are encoded by these countable
point sets. In the following theorem, compactness is as in Definition III.2.3 of
[4], not Heine-Borel compactness.

Theorem 1. (RCA0) The following are equivalent:

(1) ACA0.

(2) Every non-empty closed subset of a compact complete separable metric
space is separably closed.

(3) Every non-empty closed subset of [0, 1] is separably closed.

Proof. The proof that (1) implies (2) is Theorem 3.2 of [2]. Since RCA0 proves
that [0, 1] is a compact complete separable metric space, (3) follows directly
from (2). To complete the argument, we prove that (3) implies (1), correcting
the proofs of [1] and [2]. We will work in RCA0.

To show that (3) implies (1), by Theorem III.2.2 of [4] it suffices to use
(3) to deduce the monotone convergence theorem for sequences of rationals in
(0, 1). Let 〈ai : i ∈ N〉 be an increasing sequence of rationals in (0, 1). Define
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Bi = [0, ai) for i ≥ 0. Each Bi is open relative to the usual topology on [0, 1].
Let C be the closed subset of [0, 1] coded by {Bi : i ≥ 0}. Intuitively, C is a
closed interval with lim

n
an as its lower endpoint. We will use statement (3) to

prove the existence of this endpoint.
Since 1 ∈ C, we know that C is nonempty. Applying (3), we can find

S = 〈xk : k ∈ N〉 such that S̄ = C. By Theorem 1 of [3], RCA0 can prove
the existence of a sequence 〈bk : k ∈ N〉 such that for each k ∈ N, bk =
min{xj : j ≤ k}. Thus for all n, an ≤ an+1 ≤ bn+1 ≤ bn. We claim
that lim

n
|an − bn| = 0. To see this, let ε > 0 and choose j so large that

2−j < min{ε/2, a0}. By bounded Σ0
1 comprehension (which is provable in RCA0,

see Theorem II.3.9 in [4]), the set

G = {F ⊆ {1, 2, . . . , j} : ∃n(
∑
i∈F 2−i ≤ an)}

exists. Since G is a finite collection, the set {
∑
i∈F 2−i : F ∈ G} has a

maximum element. By the definition of G, we can find a k such that ak is greater
than or equal to this maximum. By maximality, we must have ak + 2−j ∈ C.
Since C = S̄, there is a bm such that |ak + 2−j − bm| < 2−j . If n ≥ max{k,m}
then

|an − bn| ≤ |ak − bm| ≤ |ak − (ak + 2−j)|+ |ak + 2−j − bm| < 2−j + 2−j < ε,

proving that lim
n
|an − bn| = 0. We have verified all the hypotheses of the

nested interval completeness theorem (Theorem II.4.8 of [4]). Consequently,
lim
n
an exists, completing the proof of the monotone convergence theorem and

implying ACA0.
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