Ramsey's Theorem on Trees

Jeff Hirst

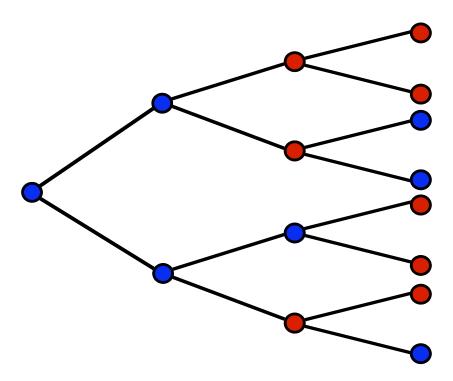
Mathematical Sciences Department Appalachian State University Boone, North Carolina

Preliminary report on joint work with: Jennifer Chubb (GWU) and Tim McNicholl (Lamar)

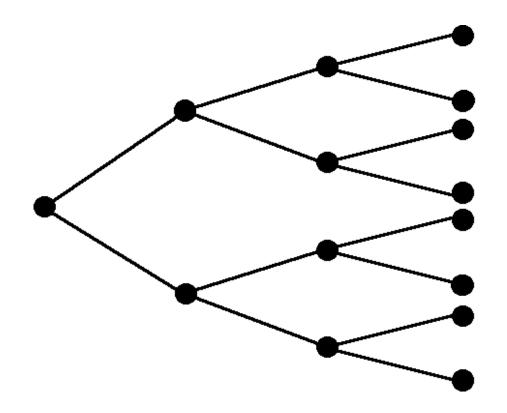
> These slides are available at: www.mathsci.appstate.edu/~jlh

Some combinatorics

Theorem 1. $\mathsf{TT}^1_{<\omega}$: For any finite coloring of $2^{<\mathbb{N}}$, there is a monochromatic subtree order-isomorphic to $2^{<\mathbb{N}}$.



Theorem 2. $\mathsf{TT}_{<\omega}^{\mathsf{n}}$: For any finite coloring of the *n*-tuples of comparable nodes in $2^{<\mathbb{N}}$, there is a color and a subtree order-isomorphic to $2^{<\mathbb{N}}$ in which all *n*-tuples of comparable nodes have the specified color.



Related combinatorial results

Deuber, Prömel, and Voigt:

- A canonical partition theorem for chains in regular trees
 - Includes $\mathsf{TT}^1_{<\omega}$. For higher exponents, modifies definition of monochromatic in order to use graph-isomorphic subtrees. (Thanks to Ali Enayat for this reference.)

Milliken

- A partition theorem for the infinite subtrees of a tree and
- A Ramsey theorem for trees
 - Subtrees are colored. Monochromatic defined in terms of strongly embeddable subtrees.

Reverse mathematics

Theorem 3. $(\mathsf{RCA}_0 + \Sigma_2^0 - \mathsf{IND})$ For all k, TT_k^1 . That is, for any finite coloring of $2^{<\mathbb{N}}$, there is a monochromatic subtree isomorphic to $2^{<\mathbb{N}}$.

Proof concept:

 s_1, \ldots, s_{2^k-1} : nonempty subsets of colors listed in increasing cardinality

 $\exists n \exists \tau \forall \sigma (\sigma \text{ extends } \tau \rightarrow \text{color of } \sigma \text{ is in } s_n)$

Pick least such n, using Σ_2^0 least element principle.

Theorem 4. (ACA₀) For all k, TT_k^2 . That is, for any finite coloring of pairs of comparable nodes of $2^{<\mathbb{N}}$, there is a monochromatic subtree isomorphic to $2^{<\mathbb{N}}$.

Theorem 5. (ACA₀) For all $n \ge 1$, $\mathsf{TT}_{<\omega}^n$ implies $\mathsf{TT}_{<\omega}^{n+1}$.

Theorem 6. For $n \ge 3$ and $k \ge 2$, RCA₀ proves that the following are equivalent: (1) ACA₀. (2) $TT^{n}_{<\omega}$. (3) TT^{n}_{k} .

Computability theory

In Ramsey's theorem and recursion theory, Carl Jockusch proves:

- Corollary 3.2: There exists a recursive basic partition P such that H(P) contains no Σ_2^0 set.
- Theorem 4.2: If P is a recursive partition of all pairs of integers into p classes, then H(P) contains a Π_2^0 set.

Theorem 5.1: If $n \ge 2$, there exists a recursive partition P of $[N]^n$ into two classes such that H(P) contains no set recursive in 0^{n-1} and hence no Σ_n^0 set.

Theorem 5.5: If P is a recursive partition of $[N]^n$ into finitely many classes, then H(P) contains a Π_n^0 set. Note: The Σ_2^0 bounds are free in the tree case.

Π^0_n bounds for trees

Theorem 7. Every computable finite coloring of pairs of comparable nodes of $2^{<\mathbb{N}}$ has a Π_2^0 monochromatic subtree that is isomorphic to $2^{<\mathbb{N}}$.

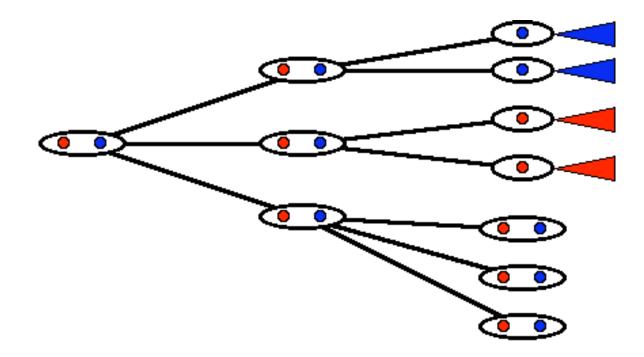
Theorem 8. Every computable finite coloring of n-tuples of comparable nodes of $2^{<\mathbb{N}}$ has a Π_n^0 monochromatic subtree that is isomorphic to $2^{<\mathbb{N}}$.

Proof strategy: Emulate Carl.

Picture from the proof of the Π_n^0 bound

color blocks:

j + 1 chains of length j above which j colors appear



Questions

- 1. Does $\mathsf{TT}^{\mathbf{1}}_{<\omega}$ imply $\Sigma_2^0 \mathsf{IND}$?
- 2. Does TT₂² imply ACA₀?(Can someone emulate Seetapun?)
- 3. Does TT_2^2 imply $TT_{<\omega}^2$? (Can someone emulate Cholak, Jockusch, and Slaman?)
- 4. What's so special about binary trees? (Answer: Nothing. ω^{ω} can be embedded in $2^{<\mathbb{N}}$)

More questions

- 1. Can the following be formulated for trees? What are the corresponding reverse mathematics and computability theoretic results?
 - \bullet Hindman's theorem
 - Erdös-Rado theorem
 - Coh
 - Stable Ramsey theorem
 - Free set theorem, thin set theorem, etc.
- 2. What's so special about trees? What about other partial orders?

References

- W. Deuber, H. J. Prömel, and B. Voigt, A canonical partition theorem for chains in regular trees, Combinatorial theory (Schloss Rauischholzhausen, 1982), Lecture Notes in Math., vol. 969, Springer, Berlin, 1982, pp. 115–132. MR 692237 (84k:05066)
- [2] Keith R. Milliken, A partition theorem for the infinite subtrees of a tree, Trans. Amer. Math. Soc. 263 (1981), no. 1, 137–148. MR 590416 (82g:04003)
- [3] Carl G. Jockusch Jr., Ramsey's theorem and recursion theory, J.
 Symbolic Logic 37 (1972), 268–280. MR 0376319 (51 #12495)
- [4] Jennifer Chubb, Jeff Hirst, and Tim McNichol, Reverse mathematics and partitions of trees (draft), available at www.mathsci. appstate.edu/~jlh/pdf/rt.pdf.