Graphs, computability, and reverse mathematics

Jeff Hirst
Appalachian State University
Boone, NC

May 21, 2014

Association for Symbolic Logic
2014 North American Annual Meeting
University of Colorado, Boulder
Reverse Mathematics

Goal: Determine exactly which set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form $\text{RCA}_0 \vdash \text{AX} \iff \text{THM}$

The base system RCA_0:
- Second order arithmetic: integers n and sets of integers X
- Induction scheme: restricted to Σ^0_1 formulas

 \[
 (\psi(0) \land \forall n (\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n \, \psi(n)
 \]
 where $\psi(n)$ has (at most) one number quantifier.

- Recursive set comprehension:

 If $\theta \in \Sigma^0_1$ and $\psi \in \Pi^0_1$, and $\forall n (\theta(n) \leftrightarrow \psi(n))$, then there is a set X such that $\forall n (n \in X \leftrightarrow \theta(n))$
More set comprehension axioms

Weak König’s Lemma: \((WKL_0)\) If \(T\) is an infinite tree in which each node is labeled 0 or 1, then \(T\) contains an infinite path.

Arithmetical comprehension: \((ACA_0)\) If \(\theta(n)\) doesn’t have any set quantifiers, then there is an \(X\) such that \(\forall n(n \in X \leftrightarrow \theta(n))\)

Theorem: \(RCA_0\) proves that the following are equivalent:

1. \(ACA_0\)
2. If \(f : \mathbb{N} \to \mathbb{N}\) is an injection then there is a set \(Y\) such that \(\forall y(y \in Y \leftrightarrow \exists x(f(x) = y))\).
Why reverse math? Why graph theory?

Work in reverse mathematics can:

- precisely categorize the logical strength of theorems.
- differentiate between different proofs of theorems.
- provide insight into the foundations of mathematics.
- utilize and contribute to work in many subdisciplines of mathematical logic – including proof theory, computability theory, models of arithmetic, etc.

Graph theory is in this talk because:

- Friedman’s [3, 4] founding work on reverse mathematics includes graph theory.
- The proofs can be described with pictures.
Question:
When do bipartite graphs contain unique matchings?
Question:
When do bipartite graphs contain unique matchings?
Question:
When do bipartite graphs contain unique matchings?
Question:
When do bipartite graphs contain unique matchings?

A finite bipartite graph \((B, G)\) has a unique matching if and only if there is an enumeration of \(B\) as \(b_1, b_2, \ldots\) so that for all \(n\)

\[|G(b_1, b_2, \ldots, b_n)| = n. \]

Alternative terminology: marriage problems, transversals, SDRs (distinct representatives)
An extension to infinite graphs:

Theorem: RCA$_0$ proves that the following are equivalent:

1. WKL$_0$
2. Suppose (B, G) is a bipartite graph and $h : B \rightarrow G$ is a function such that $h(b)$ is an upper bound on all the vertices in G connected to b. If (B, G) contains a unique matching, then there is an enumeration of B as b_1, b_2, \ldots so that for all n, $|G(b_1, b_2, \ldots, b_n)| = n$.

Comment: To show (1) implies (2), use h to construct a bounded tree of initial segments of enumerations of B. Any path is an enumeration of B.
Matchings: sketch of the reversal

We need to use the existence of the enumeration to show that a tree with no infinite paths is finite.
Here's a tree with no paths. Nodes are green.
We need to use the existence of the enumeration to show that a tree with no infinite paths is finite.
Here’s a tree with no paths. Add a blue vertex.
We need to use the existence of the enumeration to show that a tree with no infinite paths is finite. Here’s a tree with no paths. Complete the graph.
Matchings: sketch of the reversal

We need to use the existence of the enumeration to show that a tree with no infinite paths is finite. Here’s a tree with no paths. Note the unique matching.
We need to use the existence of the enumeration to show that a tree with no infinite paths is finite. Here’s a tree with no paths. In any enumeration, the root blue vertex is last. The tree is finite.
Omitting the bounding function h bumps up the strength of the preceding theorem.

Theorem: RCA$_0$ proves that the following are equivalent:

1. ACA$_0$
2. Suppose (B, G) is a bipartite graph and each vertex in B is connected to only finitely many vertices in G. If (B, G) contains a unique matching, then there is an enumeration of B as b_1, b_2, \ldots so that for all n, $|G(b_1, b_2, \ldots, b_n)| = n$.

Comment: To show that (1) implies (2), use ACA$_0$ to find h and apply the preceding theorem.
We need to use the existence of the enumeration to find the range of an injection. If the injection is:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

build the graph like this:
We need to use the existence of the enumeration to find the range of an injection. If the injection is:

\[
\begin{array}{c|cccc}
 n & 0 & 1 & 2 & 3 \\
 f(n) & 4 & 3 & 0 & 2 \\
\end{array}
\]

build the graph like this:

Add vertices and edges for each domain value.
We need to use the existence of the enumeration to find the range of an injection. If the injection is:

\[
\begin{array}{c|cccc}
 n & 0 & 1 & 2 & 3 \\
 f(n) & 4 & 3 & 0 & 2 \\
\end{array}
\]

build the graph like this:

The bipartite graph will contain a unique matching.
We need to use the existence of the enumeration to find the range of an injection. If the injection is:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(n)$</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

build the graph like this:

In any enumeration, \(D2 \) appears before \(R0 \).
We need to use the existence of the enumeration to find the range of an injection. If the injection is:

\[
\begin{array}{c|cccc}
 n & 0 & 1 & 2 & 3 \\
 f(n) & 4 & 3 & 0 & 2 \\
\end{array}
\]

build the graph like this:

\[n \in \text{Range}(f) \text{ iff } Dm \text{ appears before } Rn \text{ and } f(m) = n.\]
How strong is the following statement?

Lemma: Suppose \((B, G)\) is an infinite bipartite graph such that \(G(b)\) is finite for each \(b\) and \((B, G)\) contains a unique matching. Then some \(b\) in \(B\) is connected to exactly one \(g\) in \(G\).

Our initial attempts used arguments involving connected components of graphs...
Theorem: \(\text{RCA}_0 \) proves that the following are equivalent:

1. \(\text{ACA}_0 \)
2. Every countable graph has a connected component.

Comments on the proof: The connected component containing a given vertex is arithmetically definable in the vertex and the graph, so (1) implies (2).

For the reversal, we need to use any connected component to find the range of an injection.

If the injection is: \[
\begin{array}{c|ccc}
 n & 0 & 1 & 2 \\
 f(n) & 4 & 3 & 0
\end{array}
\]
build the graph like this...
Connected components

For the reversal, we need to use any connected component to find the range of an injection.

If the injection is: \[
\begin{array}{c|ccc}
 n & 0 & 1 & 2 \\
 \hline
 f(n) & 4 & 3 & 0
\end{array}
\]
build the graph like this...
Connected components

For the reversal, we need to use any connected component to find the range of an injection.

If the injection is:

\[
\begin{array}{c|ccc}
 n & 0 & 1 & 2 \\
 f(n) & 4 & 3 & 0 \\
\end{array}
\]

build the graph like this . . .
For the reversal, we need to use any connected component to find the range of an injection.

If the injection is:

\[
\begin{array}{c|ccc}
 n & 0 & 1 & 2 \\
 f(n) & 4 & 3 & 0 \\
\end{array}
\]

build the graph like this...
Connected components

For the reversal, we need to use any connected component to find the range of an injection.

If the injection is:

\[
\begin{array}{c|ccc}
 n & 0 & 1 & 2 \\
 f(n) & 4 & 3 & 0 \\
\end{array}
\]

build the graph like this...
Connected components with K. Gura and C. Mummert, preliminary

For the reversal, we need to use any connected component to find the range of an injection.

If the injection is:

\[
\begin{array}{c|ccc}
 n & 0 & 1 & 2 \\
 f(n) & 4 & 3 & 0 \\
\end{array}
\]

build the graph like this...
Another result on connected components:

Theorem: RCA\(_0\) proves that the following are equivalent:

1. ACA\(_0\)
2. If \(G\) is a graph then there is an infinite set of vertices all of which lie in the same connected component or no two of which lie in the same connected component.

This is reminiscent of, but not equivalent to, Ramsey’s theorem for pairs (by Seetapun and Slaman).
Ramsey’s Theorem

Theorem: \((RT^2_2) \) If \(G \) is the complete graph with vertices
\(V = \{v_0, v_1, \ldots \} \), and \(f : [V]^2 \to \{\text{red, blue}\} \) colors the edges of \(G \), then there is an infinite \(S \subset V \) such that the subgraph with vertices from \(S \) is monochromatic.
Theorem: \((\text{RT}_2^2)\) If \(G\) is the complete graph with vertices \(V = \{v_0, v_1, \ldots \}\), and \(f : [V]^2 \rightarrow \{\text{red, blue}\}\) colors the edges of \(G\), then there is an infinite \(S \subset V\) such that the subgraph with vertices from \(S\) is monochromatic.
Theorem: \((\text{RT}_2^2)\) If \(G\) is the complete graph with vertices \(V = \{v_0, v_1, \ldots \}\), and \(f : [V]^2 \to \{\text{red, blue}\}\) colors the edges of \(G\), then there is an infinite \(S \subseteq V\) such that the subgraph with vertices from \(S\) is monochromatic.
In a proof in RCA\textsubscript{0}, we can replace two applications of RT\textsubscript{2} with one application of RT\textsubscript{4}.

For example, given \(f : [\mathbb{N}]^2 \to 2 \) and \(g : [\mathbb{N}]^2 \to 2 \), define

\[
h(\text{edge}) = 2 \cdot f(\text{edge}) + g(\text{edge})
\]

Any subgraph monochromatic for \(h \) is also monochromatic for both \(f \) and \(g \).

Question: Can we replace two uses of RT\textsubscript{2} with one use of RT\textsubscript{2}?
When we replace two uses of RT_2^2 with one use of RT_4^2 . . .

We have Turing reductions Φ and Ψ such that given colorings f and g, $\Phi(f, g)$ computes the new coloring h, and given any monochromatic subgraph X for h, $\Psi(X)$ computes monochromatic subgraphs for f and g.

Given these Turing reductions, we write $\langle RT_2^2, RT_2^2 \rangle \leq_s W RT_4^2$ and say “two uses of RT_2^2 are strongly Weihrauch reducible to one use of RT_4^2.”

Revised question: Is $\langle RT_2^2, RT_2^2 \rangle \leq_s W RT_2^2$?
Ramsey’s Theorem

When we replace two uses of RT_2^2 with one use of RT_4^2 . . .

We have Turing reductions Φ and Ψ such that given colorings f and g, $\Phi(f, g)$ computes the new coloring h, and given any monochromatic subgraph X for h, $\Psi(X)$ computes monochromatic subgraphs for f and g.

Given these Turing reductions, we write $\langle \text{RT}_2^2, \text{RT}_2^2 \rangle \leq_{sW} \text{RT}_4^2$ and say “two uses of RT_2^2 are strongly Weihrauch reducible to one use of RT_4^2.”

Revised question: Is $\langle \text{RT}_2^2, \text{RT}_2^2 \rangle \leq_{sW} \text{RT}_2^2$? (Hint: No.)
Ramsey's Theorem

Definition: A Π^1_2 statement P

- is *total* if every element of 2^ω codes an instance of P, and
- has *finite tolerance* if there is a Turing functional Θ such that if B_1 and B_2 agree after m and S is a solution of B_1 then $\Theta(S, m)$ is a solution of B_2.

Squashing Theorem:
Let P be a total Π^1_2 statement with finite tolerance. Then:

$$\langle P, P \rangle \leq_{sW} P \implies \text{Seq} P \leq_{sW} P$$

Informally, if two uses of P can be reduced to one use, then infinitely many uses of P can be reduced to one use.
Squashing Theorem:
Let P be a total Π^1_2 statement with finite tolerance. Then:

$$\langle P, P \rangle \leq_{sW} P \implies \text{Seq}P \leq_{sW} P$$

Application to the RT^2_2 problem:

RT^2_2 is total and has finite tolerance.

There is a computable instance of SeqRT^2_2 such that $0''$ is computable from every solution.

There is no computable instance of RT^2_2 such that $0''$ is computable from every solution. (Jockusch)

$\text{SeqRT}^2_2 \preceq_{sW} \text{RT}^2_2$, and so $\langle \text{RT}^2_2, \text{RT}^2_2 \rangle \preceq_{sW} \text{RT}^2_2$.
A trick from the proof of the:

Squashing Theorem: $\langle P, P \rangle \leq_{SW} P$ implies $\text{Seq}P \leq_{SW} P$

Compress the sequence f_0, f_1, \ldots into a single instance h_0.

$h_0 \begin{cases} f_0 & \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\ f_1 & \cdot \cdot \cdot \cdot \cdot \cdot \cdot \end{cases}$
A trick from the proof of the:

Squashing Theorem: \(\langle P, P \rangle \leq_{SW} P \) implies \(\text{Seq}P \leq_{SW} P \)

Compress the sequence \(f_0, f_1, \ldots \) into a single instance \(h_0 \).

\[
\begin{align*}
 h_0 \begin{cases}
 \{ f_0 \} & \vdots \\
 \{ f_1 \} & \vdots \\
 \{ f_2 \} & \vdots
 \end{cases}
\end{align*}
\]
A trick from the proof of the:

Squashing Theorem: \(\langle P, P \rangle \leq_{sW} P \) implies \(\text{Seq}P \leq_{sW} P \)

Compress the sequence \(f_0, f_1, \ldots \) into a single instance \(h_0 \).
A trick from the proof of the:

Squashing Theorem: \(\langle P, P \rangle \leq_{sw} P \) implies \(\text{SeqP} \leq_{sw} P \)

Assume the initial outputs of \(h_1 \) are 0.
A trick from the proof of the:

Squashing Theorem: \(\langle P, P \rangle \leq_{sw} P \) implies \(\text{Seq} P \leq_{sw} P \)

Assume the initial outputs of \(h^2 \) are 0.

\[
\begin{align*}
& h_0 \left\{ \begin{array}{l}
 h_1 \left\{ \begin{array}{l}
 h_2 \left\{ \begin{array}{l}
 f_0 \quad \bullet \\
 0 \quad 0 \quad \bullet \quad \bullet \quad \bullet \quad \bullet \quad \bullet \\
 0 \quad 0 \quad 0 \quad 0 \quad \bullet \quad \bullet \quad \bullet \\
 f_3 \quad \bullet \\
 \end{array} \right. \\
 \end{array} \right. \\
 \end{array} \right. \\
\end{align*}
\]
Question: If C is the problem of finding a connected component of a graph, then $\langle C, C \rangle$ is strongly Weihrauch reducible to C.

- Does C have finite tolerance?
- Is SeqC reducible to C?
- Can we usefully strengthen the Squashing Theorem?

Question: In a proof in RCA$_0$, can we replace two uses of RT$_2^2$ by a single use of RT$_2^2$ in a nonuniform fashion?

Question: If we use an axiom twice in a proof, how can we know if the second use is necessary?
References

Graphs, computability, and reverse mathematics
Jeff Hirst, Appalachian State University