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Hindman’s Theorem

Theorem: (Hindman [4]) For any coloring f : N→ k , there is an
infinite set H and a color c such that for every finite set F ⊂ H,
we have f (ΣF ) = c.

An example:
n | 1 2 3 4 5 6 7 8 9 10 11 12

f(n) | N � � N � N � N � � N �

X X X

How hard is it to find H? (Short answer: we don’t know.)
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Reverse mathematics

Reverse mathematics uses a hierarchy of axioms of second
order arithmetic to measure the strength of theorems.

The language has variables for natural numbers and sets of
naturals numbers.

The base system, RCA0, includes
• arithmetic facts (e.g. n + 0 = n),
• an induction scheme (restricted to Σ0

1 formulas), and
• recursive comprehension
(computable sets exist, i.e. sets with programmable
characteristic functions exist).

Adding stronger comprehension axioms creates stronger axiom
systems.



ACA0

The system ACA0 adds arithmetical comprehension to RCA0
(sets with arithmetically definable characteristic functions exist).

A theorem of reverse mathematics:

Theorem: Over RCA0, the following are provably equivalent:
1. ACA0.
2. Ramsey’s theorem for triples and two colors. (Simpson)
3. Every countable sequence of reals in [0,1] has a

convergent subsequence. (Friedman)



Iterating. . .

Iterated Hindman’s Theorem (IHT) If f0, f1, f2, . . . is a sequence
of 2-colorings of N, then there is an infinite set
H = {h0,h1,h2, . . . } such that

H = {h0,h1, . . . } is sum monochromatic for f0,
{h1,h2, . . . } is sum monochromatic for f1,
{h2,h3, . . . } is sum monochromatic for f2, and so on.

Iterated Arithmetical Comprehension (ACA+
0 ) Suppose θ(X ,m)

is an arithmetical formula. Fix X0 and let Xn+1 = {m | θ(Xn,m)}.
Then (a code for) the sequence X0,X1,X2, . . . exists.



Comparative strengths

RCA0 proves:

ACA+
0 → IHT→ HT→ ACA0

(Blass, Hirst, and Simpson [1])

Computability theory:

There is a computable coloring with no computable sum
homogeneous set.
Does every computable coloring have an arithmetically
definable sum homogeneous set?



Ultrafilters on P(N)

A filter is a subcollection of P(N) which is
• does not contain ∅,
• is closed under superset, and
• is closed under finite intersection.

An ultrafilter contains exactly one of X and X c for each X

We can think of filters (or ultrafilters) as defining notions of
large sets.

An example:
Let u = {X ⊂ N | 2 ∈ X }. u = 〈2〉 is a principal ultrafilter.

A non-example:
Let v = {X ⊂ N | X c is finite}. v is a filter, but not an ultrafilter
(on P(N)).



Ultrafilters and Hindman’s Theorem

Theorem: (Hindman 1972 [3]) Hindman’s theorem holds if and
only if there is an ultrafilter p on P(N) such that
{x | A − x ∈ p} ∈ p whenever A ∈ p.

Notation: If A = {1,4,7,9,12, . . . } then A − 2 = {2,5,7,10, . . . }.
We can think of A − 2 as a left shift.

A formalized version [6]
Theorem: (RCA0) The following are equivalent:

1. IHT.
2. If B is a countable boolean algebra closed under left shifts,

then there is an ultrafilter p on B such that there is an
a ∈ A such that A − a ∈ p whenever A ∈ p.
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Galvin-Glazer addition
If u and v are ultrafilters on P(N), define

A ∈ u + v ↔ {x | A − x ∈ u} ∈ v

An example:

A ∈ 〈2〉+ 〈3〉 ↔ {x | A − x ∈ 〈2〉} ∈ 〈3〉
↔ {x | 2 ∈ A − x} ∈ 〈3〉
↔ {x | x + 2 ∈ A} ∈ 〈3〉
↔ {x | x ∈ A − 2} ∈ 〈3〉
↔ A − 2 ∈ 〈3〉
↔ 3 ∈ A − 2
↔ 5 ∈ A
↔ A ∈ 〈5〉 so 〈2〉+ 〈3〉 = 〈5〉



A short proof of Hindman’s theorem

Here’s the sketch. Comfort [2] fills in details.

For any ultrafilters u and v , u + v is an ultrafilter.

Under the Stone-Čech topology on the ultrafilter space, u + v is
right continuous and associative.

A right continuous associative map on a compact space has an
idempotent element.

Suppose p = p + p. Then

A ∈ p ↔ {x | A − x ∈ p} ∈ p

So p is the ultrafilter appearing in Hindman’s 1972 theorem.



Countable Boolean algebras

Motivating question:

Can we port the Galvin-Glazer proof to reverse math?

We want to substitute a countable Boolean algebra for P(N).

How does this affect the ultrafilter space?

How does this affect ultrafilter addition?



An example: Finite and cofinite sets

The finite and cofinite sets form a countable Boolean algebra
closed under left shift. Lets call them C.

In RCA0, we can construct many representations of C via
sequences of characteristic functions and associated
operations.

RCA0 can prove that every principal ultrafilter of C exists, and
that their sums exist.

What about the rest of the ultrafilters on C?



An example: Finite and cofinite sets

If u is an ultrafilter on C and u contains a finite set, then u is
principal.

If u is an ultrafilter on C and u contains no finite sets, then u
contains every cofinite set.

The cofinite sets form a (unique) nonprincipal ultrafilter on C.



An example: Finite and cofinite sets
Let u be the ultrafilter of cofinite sets on C.

How does addition with u behave?

If X is cofinite, then each of its left shifts is cofinite, so

{x | X − x ∈ u} = N ∈ u.

If X is finite, then each of its left shifts is finite, so

{x | X − x ∈ u} = ∅ /∈ u.

Summarizing u + u = u.

Using the fact that left shifts of cofinite sets are cofinite, we can
also show

u + 〈3〉 = 〈3〉+ u = u.



Summarizing: Finite and cofinite sets

ACA0 can prove that
• the Boolean algebra C exists,
• the ultrafilters on C consist of the principal ultrafilters and

the unique nonprincipal ultrafilter,
• addition is defined for all of the ultrafilters, and
• the addition is commutative.

Ultrafilter addition is commutative on some Boolean algebras,
but not on others. For example, ultrafilter addition on P(N) is
not commutative; see [5, Thm 4.27].
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Summarizing: Finite and cofinite sets

Where did we use ACA0?

Theorem:(RCA0) The following are equivalent:
1. ACA0.
2. Every infinite Boolean algebra has a nonprincipal ultrafilter.
3. C has a nonprincipal ultrafilter.
4. C has an idempotent for ultrafilter addition.

Ideas from the proof:
1→2: The algebra is countable, so we can list the sets. Make
choices so that the intersection of the chosen sets is always
infinite.
3→1: Sets can be repeated in the presentation of C. We can
insert sets A0 and A1 so that Ac

0 = A1 and which one is finite is
determined at a stage in the construction.



More differences

The ultrafilters on P(N) have a different topology from the
ultrafilters on a countable algebra.

The topology for P(N) is βN.

In a countable Boolean algebra, we can list all the sets, and
mark them 1 or 0 as we put them into an ultrafilter. So an
ultrafilter is an infinite string of 0s and 1s.

The ultrafilters on a countable Boolean algebra can be viewed
as a closed subset of Cantor space. They form a closed
compact subset of a complete separable metric space. The
principal filters are dense in the space.



Conjectures

Simpson: ACA0 proves Hindman’s Theorem.

Hirst: It is seldom profitable to bet against Simpson.

Conjecture: (RCA0) The following are equivalent:
1. IHT.
2. If B is a countable shift algebra including all finite sets,

then there is an extension B∗ of B and an ultrafilter u on
B∗ such that u + u = u.
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How many 2-colorings of K5 have no 1-colored K3 ?
Ramsey Interest Group: Anthony Hengst, Sergei Miles, Isaac Medina Silva, Allison Staley Faculty Mentor: Jeff Hirst

Appalachian State University, Department of Mathematical Sciences, Boone, North Carolina 28608

Introduction

Of the 1024 possible 2-colorings of K5, only
12 have no 1-colored triangles.

Claim 1

If any 3 edges match, then there is a
1-colored triangle.

A B

C D

Claim 2

If G has no 1-colored triangles, then G has
a 1-colored 5-cycle.

A B

C D

E F

E: 1-colored 5-cycle
F: Remaining edges form a 5-cycle

Claim 3

There are 12 ways to construct a 1-colored
5-cycle.

A B

C D

E F

4 · 3 · 2 · 1 · 1
2

= 12
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