A weak coloring principle

Jeff Hirst Appalachian State University Boone, NC USA

Joint work with: C. Davis, J. Pardo, and T. Ransom

July 11, 2018

Workshop on Ramsey Theory and Computability Rome Global Gateway, Notre Dame International

ERT (Eventually repeating tails): Suppose $f : \mathbb{N} \to k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \ge b$ there is a $y \ge b$ such that $x \ne y$ and f(x) = f(y).

ERT (Eventually repeating tails): Suppose $f : \mathbb{N} \to k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \ge b$ there is a $y \ge b$ such that $x \ne y$ and f(x) = f(y).

ERT (Eventually repeating tails): Suppose $f : \mathbb{N} \to k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \ge b$ there is a $y \ge b$ such that $x \ne y$ and f(x) = f(y).

ERT (Eventually repeating tails): Suppose $f : \mathbb{N} \to k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \ge b$ there is a $y \ge b$ such that $x \ne y$ and f(x) = f(y).

ERT (Eventually repeating tails): Suppose $f : \mathbb{N} \to k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \ge b$ there is a $y \ge b$ such that $x \ne y$ and f(x) = f(y).

ERT (Eventually repeating tails): Suppose $f : \mathbb{N} \to k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \ge b$ there is a $y \ge b$ such that $x \ne y$ and f(x) = f(y).

ECT (Eventually constant tail spectra): Suppose $f : \mathbb{N} \to k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \ge b$ there is a y > x such that f(x) = f(y).

Clearly, $RCA_0 \vdash ECT \rightarrow ERT$

 $\begin{array}{l} \text{ECT and } I\Sigma_2^0 \\ \text{RCA}_0 \vdash I\Sigma_2^0 \rightarrow \text{ECT} \end{array}$

Ideas from a proof [5]:

Use bounded Σ_2^0 comprehension to isolate the colors that appear only finitely many times.

$$F = \{c \mid \exists b \forall x (x > b \to f(x) \neq c)\}$$

Use $B\Sigma_2^0$ to find a strict upper bound on all occurrences of colors in *F*. This is the desired *b*.

 $\begin{array}{l} \text{ECT and } I\Sigma_2^0 \\ \text{RCA}_0 \vdash I\Sigma_2^0 \rightarrow \text{ECT} \end{array}$

Ideas from a proof [5]:

Use bounded Σ_2^0 comprehension to isolate the colors that appear only finitely many times.

$$F = \{c \mid \exists b \forall x (x > b \rightarrow f(x) \neq c)\}$$

Use $B\Sigma_2^0$ to find a strict upper bound on all occurrences of colors in *F*. This is the desired *b*.

The implication reverses: $\mathsf{RCA}_0 \vdash \mathsf{I}\Sigma^0_2 \leftrightarrow \mathsf{ECT}$

Consequence: $RCA_0 \vdash I\Sigma_2^0 \rightarrow ERT$ (We will see that this doesn't reverse.)

ERT is related to vertex colorings of hypergraphs.

A hypergraph consists of vertices and sets of vertices (edges).

ERT is related to vertex colorings of hypergraphs.

A hypergraph consists of vertices and sets of vertices (edges).

The M-graph

An aside: Here is a version of RT_2^3 .

If the edges of the hypergraph $[\mathbb{N}]^3$ are colored with two colors, then there is an infinite set *H* such that the subhypergraph $[H]^3$ is monochromatic.

In general, Ramsey's theorem can be viewed as addressing edge colorings of hypergraphs.

A vertex coloring of a hypergraph is *conflict free* if every edge contains a color that appears only once in that edge.

Every finite partial subhypergraph of the M-graph has a conflict free 2-coloring.

What Theorem Follows? Finally answered.

Theorem: (RCA₀) The following are equivalent:

- 1. ERT
- 2. The M-graph has no finite conflict free coloring.

Sketch:

 \rightarrow Finitely color the M-graph. Apply ERT to the coloring; get *b*. The edge starting at vertex *b* has no singleton color. The coloring is not conflict free.

← Finitely color \mathbb{N} . Copy to the M-graph. Some E_b has no singleton color. *b* witnesses ERT.

What Theorem Follows? Finally answered.

Theorem: (RCA₀) The following are equivalent:

- 1. ERT
- 2. The M-graph has no finite conflict free coloring.

Sketch:

 \rightarrow Finitely color the M-graph. Apply ERT to the coloring; get *b*. The edge starting at vertex *b* has no singleton color. The coloring is not conflict free.

← Finitely color \mathbb{N} . Copy to the M-graph. Some E_b has no singleton color. *b* witnesses ERT.

Finite partial subhypergraphs of the M-graph have conflict free 2-colorings, but the M-graph has no conflict free 2-coloring (or finite coloring). In this setting, compactness does not hold.

How strong is ERT?

Is it provable in RCA₀? Maybe, but not in any obvious fashion.

Is it equivalent to $I\Sigma_2^0$ over RCA₀? No.

Chong, Slaman, and Yang [1] proved that SRT_2^2 does not imply $I\Sigma_2^0$. If we prove ERT from SRT_2^2 , then we will know that ERT is strictly weaker than $I\Sigma_2^0$.

Goal: convert a finite coloring of \mathbb{N} into a 2-coloring of pairs.

Method:

Color an interval 1 if and only if it contains a singleton color.

Goal: convert a finite coloring of \mathbb{N} into a 2-coloring of pairs.

Method:

Color an interval 1 if and only if it contains a singleton color.

Goal: convert a finite coloring of \mathbb{N} into a 2-coloring of pairs.

Method:

Color an interval 1 if and only if it contains a singleton color.

Goal: convert a finite coloring of \mathbb{N} into a 2-coloring of pairs.

Method:

Color an interval 1 if and only if it contains a singleton color.

Note that the coloring is stable. Double swaps use a color.

Apply SRT_2^2 . Consider a big (e.g. $3 \cdot 2^{k-1}$) homogeneous set. Suppose every interval contains a singleton color.

Apply SRT₂². Consider a big (e.g. $3 \cdot 2^{k-1}$) homogeneous set. Suppose every interval contains a singleton color.

Thm: $\mathsf{RCA}_0 \vdash \mathsf{SRT}_2^2 \to \mathsf{ERT}$

Apply SRT_2^2 . Consider a big (e.g. $3 \cdot 2^{k-1}$) homogeneous set. Suppose every interval contains a singleton color.

Apply SRT_2^2 . Consider a big (e.g. $3 \cdot 2^{k-1}$) homogeneous set. Suppose every interval contains a singleton color.

In *k* steps we find an interval with no possible color. $\rightarrow \leftarrow$ So every interval contains no singleton colors. *h*₀ is the *b* for ERT.

Partial functions and $P\Sigma_0^0$

 $P\Sigma_0^0$ asserts the existence of certain sequences for partial functions.

First order version: See Hájek and Pudlák [4]

Second order formulation: See Kreuzer and Yokoyama [6]

 $P\Sigma_0^0$ asserts the existence of certain sequences for partial functions.

First order version: See Hájek and Pudlák [4]

Second order formulation: See Kreuzer and Yokoyama [6]

 $P\Sigma_0^0$ asserts the existence of certain sequences for partial functions.

First order version: See Hájek and Pudlák [4]

Second order formulation: See Kreuzer and Yokoyama [6]

 $P\Sigma_0^0$ asserts the existence of certain sequences for partial functions.

First order version: See Hájek and Pudlák [4]

Second order formulation: See Kreuzer and Yokoyama [6]

 $P\Sigma_0^0$ asserts the existence of certain sequences for partial functions.

First order version: See Hájek and Pudlák [4]

Second order formulation: See Kreuzer and Yokoyama [6]

 $P\Sigma_0^0$: for any partial *f* and any *k*, we can find $s_0, s_1 \dots s_k$.

 $P\Sigma_0^0$: for any partial *f* and any *k*, we can find $s_0, s_1 \dots s_k$.

 $P\Sigma_n^0$: sequences for Σ_n^0 definable partial functions.

Goal: Convert a *k* coloring of \mathbb{N} into a partial function.

Goal: Convert a *k* coloring of \mathbb{N} into a partial function.

Goal: Convert a *k* coloring of \mathbb{N} into a partial function.

Goal: Convert a *k* coloring of \mathbb{N} into a partial function.

Example:												
				\star		*	*	*		*	*	
n	0	1	2	3	4	5	6	7	8	9	10	
f(n)	4	2	?	5	8	6	7	9	?	10	11	
					s_0				<i>s</i> 1	<i>S</i> ₂	s 3	
spec	<		*		>	<		*	>	$<\star>$	< * >	

Goal: Convert a *k* coloring of \mathbb{N} into a partial function.

Method: Values point to next matching location.

Example:											
				*		*	\star	*		*	*
n	0	1	2	3	4	5	6	7	8	9	10
f(n)	4	2	?	5	8	6	7	9	?	10	11
					s_0				<i>s</i> 1	<i>S</i> ₂	s 3
spec	<		*		>	<		*	>	< * >	< * >

The spectra are descending subsets of the colors. When they match, the leading edge is b for ERT.

Summary for ERT

Hypergraphs and compactness

A vertex coloring of a hypergraph is *strong* if it is injective on every edge.

Theorem: (RCA₀) The following are equivalent:

- 1. WKL₀
- 2. Let *H* be a hypergraph with a set of finite sets for edges. If every finite partial hypergraph of *H* has a strong 3-coloring, then *H* has a strong *k*-coloring for some *k*.
- 3. Let *H* be a hypergraph with a sequence of finite sets for edges. If every finite partial hypergraph of *H* has a strong 2-coloring, then *H* has a strong *k*-coloring for some *k*.

 $RCA_0 + I \Sigma_2^0 \vdash WKL_0 \leftrightarrow$ every locally 2-colorable graph is finitely colorable. See Schmerl [7] and section 5 of [3].

References

- C. T. Chong, Theodore A. Slaman, and Yue Yang, *The metamathematics of stable Ramsey's theorem for pairs*, J. Amer. Math. Soc. **27** (2014), no. 3, 863–892.
 DOI 10.1090/S0894-0347-2014-00789-X
 MR3194495.
- [2] Caleb Davis, Jeffry Hirst, Jake Pardo, and Tim Ransom, *Reverse mathematics and colorings of hypergraphs* (2018), 1-13. Submitted. arXiv:1804.09638.
- [3] François G. Dorais, Jeffry L. Hirst, and Paul Shafer, *Comparing the strength of diagonally nonrecursive functions in the absence of* Σ⁰₂ *induction*, J. Symb. Log. **80** (2015), no. 4, 1211–1235. DOI 10.1017/jsl.2015.43
 MR3436365.
- Petr Hájek and Pavel Pudlák, Metamathematics of first-order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1993.
 ISBN 978-3-662-22156-3 MR1219738.
- [5] Jeffry L. Hirst, *Disguising induction: proofs of the pigeonhole principle for trees*, Foundational adventures, Tributes, vol. 22, Coll. Publ., London, 2014, pp. 113–123.
 PDF Draft MR3241956.
- [6] Alexander P. Kreuzer and Keita Yokoyama, On principles between Σ_1 and Σ_2 -induction, and monotone enumerations, J. Math. Log. **16** (2016), no. 1, 1650004, 21. DOI 10.1142/S0219061316500045 MR3518781.
- [7] James H. Schmerl, Graph coloring and reverse mathematics, MLQ Math. Log. Q.
 46 (2000), no. 4, 543–548. DOI 10.1002/1521-3870...
 MR1791549.

The first annual Student Scholar Day: SSD2018