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The principle ERT

ERT (Eventually repeating tails): Suppose f : N→ k for some
k ∈ N. Then there is a b ∈ N such that for all x > b there is a
y > b such that x 6= y and f (x) = f (y).

n 0 1 2 3 4 5 6 7 8 9. . .
f (n) N � � F N � � N � �

b

n 0 1 2 3 4 5 6 7 8 9. . .
f (n) N � � F � � N � � �

b
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A related principle

ERT (Eventually repeating tails): Suppose f : N→ k for some
k ∈ N. Then there is a b ∈ N such that for all x > b there is a
y > b such that x 6= y and f (x) = f (y).

ECT (Eventually constant tail spectra): Suppose f : N→ k for
some k ∈ N. Then there is a b ∈ N such that for all x > b there
is a y > x such that f (x) = f (y).
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ECT and IΣ0
2

RCA0 ` IΣ0
2 → ECT

Ideas from a proof [5]:

Use bounded Σ0
2 comprehension to isolate the colors that

appear only finitely many times.

F = {c | ∃b∀x(x > b → f (x) 6= c)}

Use BΣ0
2 to find a strict upper bound on all occurrences of

colors in F . This is the desired b.

The implication reverses: RCA0 ` IΣ0
2 ↔ ECT

Consequence: RCA0 ` IΣ0
2 → ERT

(We will see that this doesn’t reverse.)
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What Theorem Follows?

ERT is related to vertex colorings of hypergraphs.

A hypergraph consists of vertices and sets of vertices (edges).

The M-graph
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What Theorem Follows?

An aside: Here is a version of RT3
2.

If the edges of the hypergraph [N]3 are colored with two colors,
then there is an infinite set H such that the subhypergraph [H]3

is monochromatic.

In general, Ramsey’s theorem can be viewed as addressing
edge colorings of hypergraphs.
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A vertex coloring of a hypergraph is conflict free if every edge
contains a color that appears only once in that edge.



What Theorem Follows?
A vertex coloring of a hypergraph is conflict free if every edge
contains a color that appears only once in that edge.



What Theorem Follows?
A vertex coloring of a hypergraph is conflict free if every edge
contains a color that appears only once in that edge.



What Theorem Follows?
A vertex coloring of a hypergraph is conflict free if every edge
contains a color that appears only once in that edge.



What Theorem Follows?
A vertex coloring of a hypergraph is conflict free if every edge
contains a color that appears only once in that edge.



What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge
contains a color that appears only once in that edge.



What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge
contains a color that appears only once in that edge.



What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge
contains a color that appears only once in that edge.

Every finite partial subhypergraph of the M-graph has a conflict
free 2-coloring.



What Theorem Follows? Finally answered.

Theorem: (RCA0) The following are equivalent:
1. ERT
2. The M-graph has no finite conflict free coloring.

Sketch:
→ Finitely color the M-graph. Apply ERT to the coloring; get b.
The edge starting at vertex b has no singleton color. The
coloring is not conflict free.
← Finitely color N. Copy to the M-graph. Some Eb has no
singleton color. b witnesses ERT.

Finite partial subhypergraphs of the M-graph have conflict free
2-colorings, but the M-graph has no conflict free 2-coloring (or
finite coloring). In this setting, compactness does not hold.
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How strong is ERT?

Is it provable in RCA0? Maybe, but not in any obvious fashion.

Is it equivalent to IΣ0
2 over RCA0? No.

Chong, Slaman, and Yang [1] proved that SRT2
2 does not imply

IΣ0
2. If we prove ERT from SRT2

2, then we will know that ERT is
strictly weaker than IΣ0

2.



Thm: RCA0 ` SRT2
2 → ERT

Goal: convert a finite coloring of N into a 2-coloring of pairs.

Method:
Color an interval 1 if and only if it contains a singleton color.

Example:
n 0 1 2 3 4 5 6 7 8 9. . .

f (n) N � � F N � F F N F
[ 1 )

[ 1 )
[ 0 )

Note that the coloring is stable. Double swaps use a color.
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Thm: RCA0 ` SRT2
2 → ERT

Apply SRT2
2. Consider a big (e.g. 3 · 2k−1) homogeneous set.

Suppose every interval contains a singleton color.

h0 h1 • • • • • • • • •
[ s0 )

[ s1 ) ← no s0
[ s2 ) ← no s0, s1

In k steps we find an interval with no possible color. →←
So every interval contains no singleton colors.
h0 is the b for ERT.
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Partial functions and PΣ0
0

PΣ0
0 asserts the existence of certain sequences for partial

functions.

First order version: See Hájek and Pudlák [4]

Second order formulation: See Kreuzer and Yokoyama [6]

Example:
n 0 1 2 3 4 5 6 7

f (n) 2 ? 4 6 ? 9 3 ?
s0 s1 s2

PΣ0
0: for any partial f and any k , we can find s0, s1 . . . sk .
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Partial functions and PΣ0
0

PΣ0
0: for any partial f and any k , we can find s0, s1 . . . sk .

PΣ0
n: sequences for Σ0

n definable partial functions.



Thm: RCA0 ` PΣ0
0 → ERT

Goal: Convert a k coloring of N into a partial function.

Method: Values point to next matching location.

Example:
N � � F N F F F N F F

n 0 1 2 3 4 5 6 7 8 9 10
f(n) 4

2 ? 5 8 6 7 9 ? 10 11
s0 s1 s2 s3

spec < � N F > < N F > < F > < F >

The spectra are descending subsets of the colors.
When they match, the leading edge is b for ERT.
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Summary for ERT



Hypergraphs and compactness

A vertex coloring of a hypergraph is strong if it is injective on
every edge.

Theorem: (RCA0) The following are equivalent:
1. WKL0

2. Let H be a hypergraph with a set of finite sets for edges. If
every finite partial hypergraph of H has a strong 3-coloring,
then H has a strong k -coloring for some k .

3. Let H be a hypergraph with a sequence of finite sets for
edges. If every finite partial hypergraph of H has a strong
2-coloring, then H has a strong k -coloring for some k .

RCA0 + I Σ0
2 `WKL0 ↔ every locally 2-colorable graph is

finitely colorable. See Schmerl [7] and section 5 of [3].
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How many 2-colorings of K5 have no 1-colored K3 ?
Ramsey Interest Group: Anthony Hengst, Sergei Miles, Isaac Medina Silva, Allison Staley Faculty Mentor: Jeff Hirst
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Introduction

Of the 1024 possible 2-colorings of K5, only
12 have no 1-colored triangles.

Claim 1

If any 3 edges match, then there is a
1-colored triangle.

A B

C D

Claim 2

If G has no 1-colored triangles, then G has
a 1-colored 5-cycle.

A B

C D

E F

E: 1-colored 5-cycle
F: Remaining edges form a 5-cycle

Claim 3

There are 12 ways to construct a 1-colored
5-cycle.

A B

C D

E F

4 · 3 · 2 · 1 · 1
2

= 12
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