## A weak coloring principle

Jeff Hirst<br>Appalachian State University<br>Boone, NC USA

Joint work with: C. Davis, J. Pardo, and T. Ransom

July 11, 2018

Workshop on Ramsey Theory and Computability Rome Global Gateway, Notre Dame International

## The principle ERT

ERT (Eventually repeating tails): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y \geqslant b$ such that $x \neq y$ and $f(x)=f(y)$.

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9 \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | $\mathbf{\Delta}$ | $\square$ | $\square$ | $\star$ | $\mathbf{\Delta}$ | $\square$ | $\square$ | $\Delta$ | $\square$ | $\square$ |

## The principle ERT

ERT (Eventually repeating tails): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y \geqslant b$ such that $x \neq y$ and $f(x)=f(y)$.

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9 \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | $\Delta$ | $\square$ | $\square$ | $\star$ | $\Delta$ | $\square$ | $\square$ | $\Delta$ | $\square$ | $\square$ |

## The principle ERT

ERT (Eventually repeating tails): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y \geqslant b$ such that $x \neq y$ and $f(x)=f(y)$.


| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9 \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | $\Delta$ | $\square$ | $\square$ | $\star$ | $\square$ | $\square$ | $\Delta$ | $\square$ | $\square$ | $\square$ |

## The principle ERT

ERT (Eventually repeating tails): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y \geqslant b$ such that $x \neq y$ and $f(x)=f(y)$.


## A related principle

ERT (Eventually repeating tails): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y \geqslant b$ such that $x \neq y$ and $f(x)=f(y)$.

ECT (Eventually constant tail spectra): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y>x$ such that $f(x)=f(y)$.

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9 \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | $\Delta$ | $\square$ | $\square$ | $\star$ | $\Delta$ | $\square$ | $\square$ | $\Delta$ | $\square$ | $\square$ |

## A related principle

ERT (Eventually repeating tails): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y \geqslant b$ such that $x \neq y$ and $f(x)=f(y)$.

ECT (Eventually constant tail spectra): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y>x$ such that $f(x)=f(y)$.

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9 \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | $\Delta$ | $\square$ | $\square$ | $\star$ | $\Delta$ | $\square$ | $\square$ | $\Delta$ | $\square$ | $\square$ |
| spec | $\Delta \square \star$ |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

## A related principle

ERT (Eventually repeating tails): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y \geqslant b$ such that $x \neq y$ and $f(x)=f(y)$.

ECT (Eventually constant tail spectra): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y>x$ such that $f(x)=f(y)$.

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9 \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | $\Delta$ | $\square$ | $\square$ | $\star$ | $\Delta$ | $\square$ | $\square$ | $\Delta$ | $\square$ | $\square$ |
| spec | $\Delta \square_{\star}$ | $\Delta \square \star$ | $\Delta \square_{\star}$ | $\Delta \square_{\star}$ |  |  |  |  |  |  |

## A related principle

ERT (Eventually repeating tails): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y \geqslant b$ such that $x \neq y$ and $f(x)=f(y)$.

ECT (Eventually constant tail spectra): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y>x$ such that $f(x)=f(y)$.

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9 \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | $\Delta$ | $\square$ | $\square$ | $\star$ | $\Delta$ | $\square$ | $\square$ | $\Delta$ | $\square$ | $\square$ |
| spec | $\Delta \square \star$ | $\Delta \square \star$ | $\Delta_{\star}$ | $\Delta \square \star$ | $\Delta \square$ |

## A related principle

ERT (Eventually repeating tails): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y \geqslant b$ such that $x \neq y$ and $f(x)=f(y)$.

ECT (Eventually constant tail spectra): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y>x$ such that $f(x)=f(y)$.

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | $\triangle$ | $\square$ | $\square$ | $\star$ | $\triangle$ | $\square$ | $\square$ | $\triangle$ | $\square$ | $\square$ |
| spec | - ${ }_{\text {- }}$ * | $\triangle$ * | - $\square_{\text {* }}$ | $\Delta$ ■ | $\begin{aligned} & \Delta ■ \\ & b \end{aligned}$ | $\triangle$ | $\triangle \square$ | $\triangle \square$ | $\triangle \square$ | ${ }_{\square}$ |

## A related principle

ERT (Eventually repeating tails): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y \geqslant b$ such that $x \neq y$ and $f(x)=f(y)$.

ECT (Eventually constant tail spectra): Suppose $f: \mathbb{N} \rightarrow k$ for some $k \in \mathbb{N}$. Then there is a $b \in \mathbb{N}$ such that for all $x \geqslant b$ there is a $y>x$ such that $f(x)=f(y)$.

| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | $9 \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | $\Delta$ | $\square$ | $\square$ | $\star$ | $\Delta$ | $\square$ | $\square$ | $\Delta$ | $\square$ | $\square$ |
| spec | $\Delta \square \star$ | $\Delta \square \star$ | $\Delta \square \star$ | $\Delta \square_{\star}$ | $\Delta \square$ |

Clearly, $\mathrm{RCA}_{0} \vdash \mathrm{ECT} \rightarrow$ ERT

## ECT and $I \Sigma_{2}^{0}$

$\mathrm{RCA}_{0} \vdash \mathrm{IE} \mathrm{I}_{2}^{0} \rightarrow \mathrm{ECT}$

Ideas from a proof [5]:
Use bounded $\Sigma_{2}^{0}$ comprehension to isolate the colors that appear only finitely many times.

$$
F=\{c \mid \exists b \forall x(x>b \rightarrow f(x) \neq c)\}
$$

Use $B \Sigma_{2}^{0}$ to find a strict upper bound on all occurrences of colors in $F$. This is the desired $b$.

## ECT and $I \Sigma_{2}^{0}$

$\mathrm{RCA}_{0} \vdash \mathrm{I} \Sigma_{2}^{0} \rightarrow \mathrm{ECT}$

Ideas from a proof [5]:
Use bounded $\Sigma_{2}^{0}$ comprehension to isolate the colors that appear only finitely many times.

$$
F=\{c \mid \exists b \forall x(x>b \rightarrow f(x) \neq c)\}
$$

Use $B \Sigma_{2}^{0}$ to find a strict upper bound on all occurrences of colors in $F$. This is the desired $b$.

The implication reverses: $\mathrm{RCA}_{0} \vdash \Sigma_{2}^{0} \leftrightarrow$ ECT
Consequence: $\mathrm{RCA}_{0} \vdash \mathrm{I} \Sigma_{2}^{0} \rightarrow$ ERT (We will see that this doesn't reverse.)

## What Theorem Follows?

ERT is related to vertex colorings of hypergraphs.
A hypergraph consists of vertices and sets of vertices (edges).


## What Theorem Follows?

ERT is related to vertex colorings of hypergraphs.
A hypergraph consists of vertices and sets of vertices (edges).


The M-graph

## What Theorem Follows?

An aside: Here is a version of $R T_{2}^{3}$.

If the edges of the hypergraph $[\mathbb{N}]^{3}$ are colored with two colors, then there is an infinite set $H$ such that the subhypergraph $[H]^{3}$ is monochromatic.

In general, Ramsey's theorem can be viewed as addressing edge colorings of hypergraphs.

## What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge contains a color that appears only once in that edge.


## What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge contains a color that appears only once in that edge.


## What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge contains a color that appears only once in that edge.


## What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge contains a color that appears only once in that edge.


## What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge contains a color that appears only once in that edge.


## What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge contains a color that appears only once in that edge.


## What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge contains a color that appears only once in that edge.


## What Theorem Follows?

A vertex coloring of a hypergraph is conflict free if every edge contains a color that appears only once in that edge.


Every finite partial subhypergraph of the M -graph has a conflict free 2 -coloring.

## What Theorem Follows? Finally answered.

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:

1. ERT
2. The M-graph has no finite conflict free coloring.

Sketch:
$\rightarrow$ Finitely color the M-graph. Apply ERT to the coloring; get $b$.
The edge starting at vertex $b$ has no singleton color. The coloring is not conflict free.
$\leftarrow$ Finitely color $\mathbb{N}$. Copy to the M-graph. Some $E_{b}$ has no singleton color. $b$ witnesses ERT.

## What Theorem Follows? Finally answered.

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:

1. ERT
2. The M -graph has no finite conflict free coloring.

Sketch:
$\rightarrow$ Finitely color the M-graph. Apply ERT to the coloring; get $b$.
The edge starting at vertex $b$ has no singleton color. The coloring is not conflict free.
$\leftarrow$ Finitely color $\mathbb{N}$. Copy to the M-graph. Some $E_{b}$ has no singleton color. $b$ witnesses ERT.

Finite partial subhypergraphs of the M-graph have conflict free 2 -colorings, but the M -graph has no conflict free 2 -coloring (or finite coloring). In this setting, compactness does not hold.

## How strong is ERT?

Is it provable in $\mathrm{RCA}_{0}$ ? Maybe, but not in any obvious fashion.

Is it equivalent to $I \Sigma_{2}^{0}$ over $\mathrm{RCA}_{0}$ ? No.

Chong, Slaman, and Yang [1] proved that $\mathrm{SRT}_{2}^{2}$ does not imply $1 \Sigma_{2}^{0}$. If we prove ERT from $S R T_{2}^{2}$, then we will know that ERT is strictly weaker than $I \Sigma_{2}^{0}$.

## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{SRT}_{2}^{2} \rightarrow \mathrm{ERT}$

Goal: convert a finite coloring of $\mathbb{N}$ into a 2 -coloring of pairs.
Method:
Color an interval 1 if and only if it contains a singleton color.
Example:


## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{SRT}_{2}^{2} \rightarrow \mathrm{ERT}$

Goal: convert a finite coloring of $\mathbb{N}$ into a 2 -coloring of pairs.
Method:
Color an interval 1 if and only if it contains a singleton color.
Example:


## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{SRT}_{2}^{2} \rightarrow \mathrm{ERT}$

Goal: convert a finite coloring of $\mathbb{N}$ into a 2 -coloring of pairs.
Method:
Color an interval 1 if and only if it contains a singleton color.
Example:


## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{SRT}_{2}^{2} \rightarrow \mathrm{ERT}$

Goal: convert a finite coloring of $\mathbb{N}$ into a 2 -coloring of pairs.
Method:
Color an interval 1 if and only if it contains a singleton color.
Example:


Note that the coloring is stable. Double swaps use a color.

## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{SRT}_{2}^{2} \rightarrow \mathrm{ERT}$

Apply SRT ${ }_{2}^{2}$. Consider a big (e.g. $3 \cdot 2^{k-1}$ ) homogeneous set. Suppose every interval contains a singleton color.


## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{SRT}_{2}^{2} \rightarrow \mathrm{ERT}$

Apply SRT ${ }_{2}^{2}$. Consider a big (e.g. $3 \cdot 2^{k-1}$ ) homogeneous set. Suppose every interval contains a singleton color.


## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{SRT}_{2}^{2} \rightarrow \mathrm{ERT}$

Apply SRT ${ }_{2}^{2}$. Consider a big (e.g. $3 \cdot 2^{k-1}$ ) homogeneous set. Suppose every interval contains a singleton color.


## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{SRT}_{2}^{2} \rightarrow \mathrm{ERT}$

Apply SRT ${ }_{2}^{2}$. Consider a big (e.g. $3 \cdot 2^{k-1}$ ) homogeneous set. Suppose every interval contains a singleton color.


In $k$ steps we find an interval with no possible color. $\rightarrow \leftarrow$ So every interval contains no singleton colors. $h_{0}$ is the $b$ for ERT.

## Partial functions and $\mathrm{P} \Sigma_{0}^{0}$

$\mathrm{P} \Sigma_{0}^{0}$ asserts the existence of certain sequences for partial functions.

First order version: See Hájek and Pudlák [4]
Second order formulation: See Kreuzer and Yokoyama [6]

## Partial functions and $\mathrm{P} \Sigma_{0}^{0}$

$P \sum_{0}^{0}$ asserts the existence of certain sequences for partial functions.

First order version: See Hájek and Pudlák [4]
Second order formulation: See Kreuzer and Yokoyama [6]

Example: | $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $f(n)$ | 2 | $?$ | 4 | 6 | $?$ | 9 | 3 | $?$ |

## Partial functions and $\mathrm{P} \Sigma_{0}^{0}$

$P \sum_{0}^{0}$ asserts the existence of certain sequences for partial functions.

First order version: See Hájek and Pudlák [4]
Second order formulation: See Kreuzer and Yokoyama [6]

Example: | $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $f(n)$ | 2 | $?$ | 4 | 6 | $?$ | 9 | 3 | $?$ |

## Partial functions and $\mathrm{P} \Sigma_{0}^{0}$

$P \sum_{0}^{0}$ asserts the existence of certain sequences for partial functions.

First order version: See Hájek and Pudlák [4]
Second order formulation: See Kreuzer and Yokoyama [6]

Example: | $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | 2 | $?$ | 4 | 6 | $?$ | 9 | 3 | $?$ |

## Partial functions and $P \Sigma_{0}^{0}$

$P \sum_{0}^{0}$ asserts the existence of certain sequences for partial functions.

First order version: See Hájek and Pudlák [4]
Second order formulation: See Kreuzer and Yokoyama [6]

Example: | n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f(n)$ | 2 | $?$ | 4 | 6 | $?$ | 9 | 3 | $?$ |
|  |  |  | $s_{0}$ |  | $s_{1}$ |  | $s_{2}$ |  |

$\mathrm{P} \Sigma_{0}^{0}$ : for any partial $f$ and any $k$, we can find $s_{0}, s_{1} \ldots s_{k}$.

## Partial functions and $\mathrm{P} \Sigma_{0}^{0}$

$\mathrm{P} \Sigma_{0}^{0}$ : for any partial $f$ and any $k$, we can find $s_{0}, s_{1} \ldots s_{k}$.
$\mathrm{P} \Sigma_{n}^{0}$ : sequences for $\Sigma_{n}^{0}$ definable partial functions.


## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{P} \Sigma_{0}^{0} \rightarrow \mathrm{ERT}$

Goal: Convert a $k$ coloring of $\mathbb{N}$ into a partial function.
Method: Values point to next matching location.
Example:

|  | $\Delta$ | $\square$ | $\square$ | $\star$ | $\Delta$ | $\star$ | $\star$ | $\star$ | $\Delta$ | $\star$ | $\star$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $\mathrm{f}(\mathrm{n})$ | 4 |  |  |  |  |  |  |  |  |  |  |

## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{P} \Sigma_{0}^{0} \rightarrow \mathrm{ERT}$

Goal: Convert a $k$ coloring of $\mathbb{N}$ into a partial function.
Method: Values point to next matching location.
Example:

|  | $\boldsymbol{\Delta}$ | $\square$ | $\mathbf{■}$ | $\star$ | $\boldsymbol{\Delta}$ | $\star$ | $\star$ | $\star$ | $\mathbf{\Delta}$ | $\star$ | $\star$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $\mathrm{f}(\mathrm{n})$ | 4 | 2 | $?$ | 5 | 8 | 6 | 7 | 9 | $?$ | 10 | 11 |

## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{P} \Sigma_{0}^{0} \rightarrow \mathrm{ERT}$

Goal: Convert a $k$ coloring of $\mathbb{N}$ into a partial function.
Method: Values point to next matching location.
Example:

|  | $\Delta$ | $\square$ | $\square$ | $\star$ | $\Delta$ | $\star$ | $\star$ | $\star$ | $\Delta$ | $\star$ | $\star$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $\mathrm{f}(\mathrm{n})$ | 4 | 2 | $?$ | 5 | 8 | 6 | 7 | 9 | $?$ | 10 | 11 |
|  |  |  |  |  | $s_{0}$ |  |  |  | $s_{1}$ | $s_{2}$ | $s_{3}$ |

## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{P} \Sigma_{0}^{0} \rightarrow \mathrm{ERT}$

Goal: Convert a $k$ coloring of $\mathbb{N}$ into a partial function.
Method: Values point to next matching location.
Example:

|  | $\Delta$ | $\square$ | $\square$ | $\star$ | $\Delta$ | $\star$ | $\star$ | $\star$ | $\Delta$ | $\star$ | $\star$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $\mathrm{f}(\mathrm{n})$ | 4 | 2 | $?$ | 5 | 8 | 6 | 7 | 9 | $?$ | 10 | 11 |
|  |  |  |  |  | $s_{0}$ |  |  |  | $s_{1}$ | $s_{2}$ | $s_{3}$ |
| spec | $<■$ | $\Delta$ | $\star$ |  | $>$ | $<$ | $\Delta$ | $\star$ | $>$ | $\langle\star\rangle$ | $\langle\star\rangle$ |

## Thm: $\mathrm{RCA}_{0} \vdash \mathrm{P} \Sigma_{0}^{0} \rightarrow \mathrm{ERT}$

Goal: Convert a $k$ coloring of $\mathbb{N}$ into a partial function.
Method: Values point to next matching location.
Example:

|  | $\Delta$ | $\square$ | $\square$ | $\star$ | $\Delta$ | $\star$ | $\star$ | $\star$ | $\Delta$ | $\star$ | $\star$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $\mathrm{f}(\mathrm{n})$ | 4 | 2 | $?$ | 5 | 8 | 6 | 7 | 9 | $?$ | 10 | 11 |
|  |  |  |  |  | $s_{0}$ |  |  |  | $s_{1}$ | $s_{2}$ | $s_{3}$ |
| spec | $<■$ | $\Delta$ | $\star$ |  | $>$ | $<$ | $\Delta$ | $\star$ | $>$ | $<\star>$ | $<\star>$ |

The spectra are descending subsets of the colors. When they match, the leading edge is $b$ for ERT.

## Summary for ERT



## Hypergraphs and compactness

A vertex coloring of a hypergraph is strong if it is injective on every edge.

Theorem: $\left(\mathrm{RCA}_{0}\right)$ The following are equivalent:

1. $\mathrm{WKL}_{0}$
2. Let $H$ be a hypergraph with a set of finite sets for edges. If every finite partial hypergraph of $H$ has a strong 3-coloring, then $H$ has a strong $k$-coloring for some $k$.
3. Let $H$ be a hypergraph with a sequence of finite sets for edges. If every finite partial hypergraph of $H$ has a strong 2-coloring, then $H$ has a strong $k$-coloring for some $k$.
$\mathrm{RCA}_{0}+\mathrm{I} \Sigma_{2}^{0} \vdash \mathrm{WKL}_{0} \leftrightarrow$ every locally 2-colorable graph is finitely colorable. See Schmerl [7] and section 5 of [3].

## References

[1] C. T. Chong, Theodore A. Slaman, and Yue Yang, The metamathematics of stable Ramsey's theorem for pairs, J. Amer. Math. Soc. 27 (2014), no. 3, 863-892. DOI 10.1090/S0894-0347-2014-00789-X MR3194495.
[2] Caleb Davis, Jeffry Hirst, Jake Pardo, and Tim Ransom, Reverse mathematics and colorings of hypergraphs (2018), 1-13. Submitted.
arXiv:1804.09638.
[3] François G. Dorais, Jeffry L. Hirst, and Paul Shafer, Comparing the strength of diagonally nonrecursive functions in the absence of $\Sigma_{2}^{0}$ induction, J. Symb. Log. 80 (2015), no. 4, 1211-1235. DOI 10.1017/jsl.2015.43 MR3436365.
[4] Petr Hájek and Pavel Pudlák, Metamathematics of first-order arithmetic, Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1993.
ISBN 978-3-662-22156-3 MR1219738.
[5] Jeffry L. Hirst, Disguising induction: proofs of the pigeonhole principle for trees, Foundational adventures, Tributes, vol. 22, Coll. Publ., London, 2014, pp. 113-123. PDF Draft MR3241956.
[6] Alexander P. Kreuzer and Keita Yokoyama, On principles between $\Sigma_{1}$ - and $\Sigma_{2}$-induction, and monotone enumerations, J. Math. Log. 16 (2016), no. 1, 1650004, 21. DOI 10.1142/S0219061316500045

MR3518781.
[7] James H. Schmerl, Graph coloring and reverse mathematics, MLQ Math. Log. Q. 46 (2000), no. 4, 543-548. DOI 10.1002/1521-3870...

MR1791549.

## How many 2-colorings of K5 $亡$ have no 1-colored K3 $\triangle$ ?

Ramsey Interest Group: Anthony Hengst, Sergei Miles, Isaac Medina Silva, Allison Staley
Faculty Mentor: Jeff Hirst
Appalachian State University, Department of Mathematical Sciences, Boone, North Carolina 28608
 12 have no 1-colored triangles.

If any 3 edges match, then there is a 1-colored triangle.



If $G$ has no 1 -colored triangles, then $G$ has
a 1-colored 5-cycle.


E: 1-colored 5-cycle
F : Remaining edges form a 5 -cycle

Claim 3

There are 12 ways to construct a 1 -colored 5-cycle.


$$
\frac{4 \cdot 3 \cdot 2 \cdot 1 \cdot 1}{2}=12
$$

