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Reverse Mathematics

Goal: Determine exactly which set existence axioms are
needed to prove familiar theorems.

Method: Prove results of the form

RCA0 ` AX↔ THM

where:

• RCA0 is a weak axiom system,
• AX is a set existence axiom selected from

a small hierarchy of axioms, and
• THM is a familiar theorem.



Why bother?

Work in reverse mathematics can:

• precisely categorize the logical strength of theorems.

• differentiate between different proofs of theorems.

• provide insight into the foundations of mathematics.

• utilize and contribute to work in many subdisciplines of
mathematical logic – including proof theory, computability
theory, models of arithmetic, etc.



RCA0

Language:
Integer variables: x , y , z Set variables: X , Y , Z

Axioms:
basic arithmetic axioms

(0, 1, +, ×, =, and < behave as usual.)
Restricted induction

(ψ(0)∧ ∀n(ψ(n)→ ψ(n + 1)))→ ∀nψ(n)
where ψ(n) has (at most) one number quantifier.

Recursive set comprehension
If θ ∈ Σ0

1 and ψ ∈ Π0
1, and ∀n(θ(n)↔ ψ(n)),

then there is a set X such that ∀n(n ∈ X ↔ θ(n))



Comments on coding

• Elements of countable collections of objects can be
identified with natural numbers.

• RCA0 can prove the arithmetic associated with pairing
functions.

• Sets of pairs correspond to functions and/or countable
sequences.

• Many mathematical concepts can be encoded in terms of
such sequences. Second order arithmetic is remarkably
expressive.

• Some coding can be averted: See Friedman’s work on
Strict Reverse Mathematics or Kohlenbach’s Higher Order
Reverse Mathematics in Reverse Mathematics 2001.
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An example

Theorem
(RCA0) Every finite graph with maximum degree 2 and no
cycles of odd length is bipartite (i.e. can be 2-colored).

The idea behind the proof:
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WKL0

Weak König’s Lemma

Statement: Big very skinny trees are tall.

More formally: If T is an infinite tree in which each node is
labeled 0 or 1, then T contains an infinite path.

Or the contrapositive: If a 0-1 tree T has no infinite paths, then
it must be finite.

The subsystem WKL0 is RCA0 plus Weak König’s Lemma.

Note: RCA0 cannot prove WKL0
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Finally! Some reverse mathematics!

Theorem

(RCA0) The following are equivalent:

1. WKL0.

2. Every 2-regular graph with no cycles of odd length is
bipartite.

Note: RCA0 proves that a graph is bipartite if and only if there is
a 2-coloring of its nodes.



WKL0 implies bipartite graph theorem

Suppose G is a graph with vertices v0, v1, v2, . . . and no
odd cycles.

We need to use a 0 − 1 tree to cook up a 2-coloring of G.

Let T be the tree consisting of sequences of the form
〈i0, i1, . . . , in〉 where the sequence is a correct 2-coloring of
the subgraph of G on the vertices v0, v1, . . . , vn.

Since G has no odd cycles, RCA0 proves T contains
infinitely many nodes.

Any path through T is the desired 2-coloring.
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A tool for reversals

Theorem

(RCA0) The following are equivalent:

1. WKL0.

2. If f and g are injective functions from N into N and
Ran(f ) ∩ Ran(g) = ∅, then there is a set X such that
Ran(f ) ⊂ X and X ∩ Ran(g) = ∅.

Comment: X in (2) is like a separating set for disjoint
computably enumerable sets.



The bipartite graph theorem implies WKL0. A reversal!

Suppose we are given f and g with Ran(f ) ∩ Ran(g) = ∅.

If, for example, f (0) = 1 and g(0) = 2, build G like this:
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The bipartite graph theorem implies WKL0. A reversal!

Suppose we are given f and g with Ran(f ) ∩ Ran(g) = ∅.

If, for example, f (0) = 1 and g(0) = 2, extend elsewhere



The bipartite graph theorem implies WKL0. A reversal!

Suppose we are given f and g with Ran(f ) ∩ Ran(g) = ∅.

If, for example, f (0) = 1 and g(0) = 2, color and finish. . .



A few other theorems equivalent to WKL0

Theorem
(RCA0) The following are equivalent:

1. WKL0.
2. Every ctn. function on [0,1] is bounded. (Simpson)
3. The closed interval [0,1] is compact. (Friedman)
4. Every closed subset of Q ∩ [0,1] is compact. (Hirst)
5. Existence theorem for solutions to ODEs. (Simpson)
6. If 〈xn〉n∈N is a sequence of real numbers then there is a

sequence of natural numbers 〈in〉n∈N such that for each j,
xij = min{xn | n 6 j}. (Hirst)



Results about matchings: joint work with Noah Hughes

RCA0 proves the following theorem of Philip Hall

Theorem
(RCA0) If M = (B,G) is a finite society such that |G(B0)| > |B0|

for every B0 ⊂ B, then M is espousable.
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Results about matchings: joint work with Noah Hughes

. . . and RCA0 proves the following theorem of Marshall Hall, Jr.

Theorem
(RCA0) If M = (B,G) is a finite society with a unique espousal,
then there is an enumeration of B such that for every i,
|G({b0, . . . ,bi−1})| = i .
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A result about infinite matchings (with Noah)

Theorem
(RCA0) The following are equivalent:

1. WKL0.
2. Suppose M = (B,G) is a society and h(b) = |G(b)| for

every b ∈ B. If M has a unique espousal, then there is an
enumeration of B such that for every i,
|G({b0, . . . ,bi−1})| = i .

Note: The existence of the enumeration is actually a necessary
and sufficient condition for the existence of a unique espousal.



Sketch of the reversal
We need to use the existence of the enumeration to show that a
tree with no infinite paths is finite.
Here’s a tree with no paths. Nodes are girls



Sketch of the reversal

We need to use the existence of the enumeration to show that a
tree with no infinite paths is finite.
Here’s a tree with no paths. Add a boy.



Sketch of the reversal
We need to use the existence of the enumeration to show that a
tree with no infinite paths is finite.
Here’s a tree with no paths. Complete the society.



Sketch of the reversal
We need to use the existence of the enumeration to show that a
tree with no infinite paths is finite.
Here’s a tree with no paths. In any enumeration, the root boy is
last and has finitely many predecessors. The tree is finite.



Arithmetical Comprehension

ACA0 is RCA0 plus the following comprehension scheme:

For any formula θ(n) with only number quantifiers, the set
{n ∈ N | θ(n)} exists.

The minimum ω model of ACA0 contains all the arithmetically
definable sets.

Note: WKL0 6` ACA0, but ACA0 `WKL0.



ACA0 and Graph Theory

Theorem
(RCA0) The following are equivalent:

1. ACA0

2. Every graph can be decomposed into its connected
components.

Half of the proof: To prove that 1) implies 2), let G be a graph
with vertices v0, v1, ...

Define f by letting f (n) be the least j such that there is a path
from vn to vj .

By ACA0, f exists. f is the desired decomposition.
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A tool for reversals to ACA0

Theorem
(RCA0) The following are equivalent:

1. ACA0

2. If f : N→ N is 1-1, then Ran(f ) exists.

To prove that the graph decomposition theorem implies ACA0,
we want to use a graph decomposition to calculate the range of
a function.



The graph decomposition theorem implies ACA0

Suppose we are given an injection f .

If, for example, f (0) = 2 and f (1) = 0, we will construct the
graph G as follows:

Add links for each value of f .
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The graph decomposition theorem implies ACA0

Suppose we are given an injection f .

If, for example, f (0) = 2 and f (1) = 0, we will construct the
graph G as follows:

The range of f is computable from the decomposition.



Other theorems equivalent to ACA0

Theorem
(RCA0) The following are equivalent:

1. ACA0.
2. Bolzano-Weierstraß theorem. (Friedman)
3. Cauchy sequences converge. (Simpson)
4. Ramsey’s theorem for triples. (Simpson)
5. Σ0

1-CE (a maximality principle).
(Dzhafarov and C. Mummert)



Arithmetical Transfinite Recursion
ATR0 consists of RCA0 plus axioms that allow iteration of
arithmetical comprehension along any well ordering. This
allows transfinite constructions.

Theorem
(RCA0) The following are equivalent:

1. ATR0.
2. Lusin’s Separation Theorem: Any two disjoint analytic sets

can be separated by a Borel set. (Simpson)
3. Mahlo’s Theorem: Given any two countable closed

compact subsets of the reals, one can be
homeomorphically embedded in the other. (Friedman and
Hirst)

4. Every countable reduced Abelian p-group has an Ulm
resolution. (Friedman, Simpson, and Smith)

5. Sherman’s Inequality: If α, β, and γ are countable well
orderings, then (α+ β)γ 6 αγ+ βγ. (Hirst)



Π1
1 comprehension

The system Π1
1 − CA0 is RCA0 plus the axioms asserting the

existence of the set {n ∈ N | θ(n)} for θ ∈ Π1
1. (That is, θ has

one universal set quantifier and no other set quantifiers.)

Theorem
(RCA0) The following are equivalent:

1. Π1
1 − CA0.

2. If 〈Ti〉n∈N is a sequence of trees then there is a function
f : N→ 2 such that f (n) = 1 iff Tn is well founded.

3. Cantor/Bendixson Theorem: Every closed subset of R is
the union of a countable set and a perfect set.
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Things that don’t fit

Theorems are interesting when they are equivalent to one of
the “big five,” and also when they aren’t.

• The infinite pigeon-hole principle, RT(1), is not provable in
WKL0. RT(1) is equivalent to a Σ0

2 bounding principle.
• Ramsey’s theorem for pairs on trees, TT(2), implies the

usual form of Ramsey’s theorem for pairs, RT(2). Can the
proof that RT(2) does not imply ACA0 be adapted to show
that TT(2) does not imply ACA0?
• The statement “every graph with finitely many connected

components can be decomposed into its connected
components” is equivalent to induction for Σ0

2 formulas over
RCA0. RCA0 proves that every graph with finitely many
components has a connected component. Does RCA0
prove that every graph has a connected component?
• Full Ramsey’s theorem is equivalent to ACA+

0 (Mileti).
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