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A weak form of Hindman’s theorem

HIL: Suppose f : N<N → k is a finite coloring of the finite
subsets of the natural numbers. Then there is a an infinite
sequence 〈Xi〉i∈N of distinct finite sets and a color c < k such
that for every finite set F ⊂ N we have f (∪i∈F Xi) = c.

HTU: Suppose f : N<N → k is a finite coloring of the finite
subsets of the natural numbers. Then there is a an infinite
sequence 〈Xi〉i∈N of increasing finite sets and a color c < k
such that for every finite set F ⊂ N we have f (∪i∈F Xi) = c.

Xi < Xj means max(Xi) < min(Xj)



Theorem
(RCA0) The following are equivalent:

1. HIL.
2. RT(1): If f : N→ k then there is a c < k such that

{n | f (n) = c} is infinite.

Sketch.
(1)→ (2). Given f : N→ k , define g(x) = f (max(X )). Apply
HIL. Thin so max(Xi) < max(Xi+1). f is constant on the
maxima.

(2)→ (1). Fiven f : N<N → k , define g(n) = f ([0,n]). Apply
RT(1) to find n0,n1, . . . monochromatic. Let Xi = [0,ni ].



Theorem
(RCA0) The following are equivalent:

1. HIL.
2. RT(1): If f : N→ k then there is a c < k such that

{n | f (n) = c} is infinite.

Sketch.
(1)→ (2). Given f : N→ k , define g(x) = f (max(X )). Apply
HIL. Thin so max(Xi) < max(Xi+1). f is constant on the
maxima.

(2)→ (1). Fiven f : N<N → k , define g(n) = f ([0,n]). Apply
RT(1) to find n0,n1, . . . monochromatic. Let Xi = [0,ni ].



Theorem
(RCA0) The following are equivalent:

1. HIL.
2. RT(1): If f : N→ k then there is a c < k such that

{n | f (n) = c} is infinite.

Sketch.
(1)→ (2). Given f : N→ k , define g(x) = f (max(X )). Apply
HIL. Thin so max(Xi) < max(Xi+1). f is constant on the
maxima.

(2)→ (1). Fiven f : N<N → k , define g(n) = f ([0,n]). Apply
RT(1) to find n0,n1, . . . monochromatic. Let Xi = [0,ni ].



Why bother?

Based on Tait’s work, Simpson [6] says that a theorem is
finitistically reducible if it is provable in a theory which is a
conservative extension of PRA (primitive recursive arithmetic)
for Π0

1 sentences.

WKL0 + RT(1) is conservative over PRA for Π0
2 formulas.

Since WKL0 + RT(1) proves RCA0 + HIL, we know
HIL is finitistically reducible.

RCA0 + HTU proves ACA0 [1], so RCA0 + HTU proves Π0
1

formulas that PRA can’t.
The consistency of PRA is a Π0

1 formula.
HTU is not finitistically redicible.
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Decomposing graphs

Two vertices of a graph lie in the same connected component if
there is a path between them.

A decomposition of a graph into connected components is a
function f mapping vertices into N such that v1 and v2 lie in the
same connected component if and only if f (v1) = f (v2).

Theorem
(RCA0) The following are equivalent:

1. ACA0.
2. Every graph can be decomposed into its connected

components.



Finitely many components

A graph has at most k connected components if every
collection of k + 1 vertices has at least one pair that is
connected by a path.

DkG: For every k , if G has at most k connected components,
then G can be decomposed into its connected components.

Theorem
RCA0 proves that Σ0

2-IND implies DkG.

Sketch.
Σ0

2-IND (in the form of Π0
2-LE) proves that there is a least code

for a sequence of vertices such that every vertex is path
connected to some sequence element.
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Another pigeonhole principle

TT(1): For any finite coloring of 2<N, there is a monochromatic
subtree order-isomorphic to 2<N.



Not your garden variety pigeonhole principle

TT(1): For any finite coloring of 2<N, there is a monochromatic
subtree order-isomorphic to 2<N.

RT(1): If f : N→ k then there is a c < k such that {n | f (n) = c}
is infinite.

A theorem of Corduan, Groszek, and Mileti [2]:

Theorem
RCA0 + RT(1) does not prove TT(1).

Their proof shows how to extend any model where Σ0
2-IND fails

to a model where TT(1) fails.



Theorem
RCA0 proves that DkG implies TT(1).

Ideas for the proof:
Given f : 2<N → k , we want to build some new graph G
with finitely many connected components. We’ll use the
decomposition of G to find a monochromatic subtree for f .

We can enumerate the nodes in 2<N.

For any node n, let Tn denote all the nodes extending it
(including n).

Let Sp(Tn) be shorthand for the spectrum above n, that is,
the range of f on Tn.



Constructing the graph

Construct G from subgraphs GX for each non-empty X ⊂ [0, k).

GX will look something like this:

b0 b1

where b0 witnesses Sp(T0) 6⊂ X,
b1 witnesses Sp(T1) 6⊂ X

and so on. . . .

Note that there is an n such that Sp(Tn) ⊂ X if and only if GX
has two components.



Conclusion of the proof that DkG implies TT(1)

Suppose g is the decomposition of G.
WLOG suppose the range of g is an initial segment of N.

We can calculate
• the exact size of the range of g.
• the exact number of components of G.
• the first vertex in each component.
• which subgraphs GX have two components and which

have one.

Pick the first set X0 ⊂ [0, k) such that
GX0 has two components, and
for every proper subset Y of X0, GY has one component.

If Sp(Tn) = X0, then every extension of node n also has X0 as
its spectrum. Build the monochromatic subtree.
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DkG and Σ0
2-IND

We’ve shown that RCA0 + DkG implies TT(1).

RCA0 also proves that DkG is equivalent to a Π1
1 formula.

(Every graph with at most k components has a minimal list
of vertices such that every vertex can be reached from a
list member.)

Corduan, Groszek, and Mileti [2] show that whenever θ is
Π1

1, RCA0 + θ ` TT(1) if and only if RCA0 + θ ` Σ0
2-IND.

Consequently, RCA0 ` DkG↔ Σ0
2-IND.

Decomposition of graphs with a finite number of connected
components is equivalent to Σ0

2-IND.
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