Representations of reals in reverse mathematics

Jeffry L. Hirst Appalachian State University Boone, North Carolina

2006 Winter ASL Meeting in San Antonio

These slides appear at: www.mathsci.appstate.edu/~jlh

Four representations of reals suitable for computable analysis or reverse mathematics

1. Rapidly converging Cauchy sequences: $\rho : \mathbb{N} \to \mathbb{Q}$ such that

$$\forall k \forall i \ |\rho(k) - \rho(k+i)| \le 2^{-k}$$

- 2. Decimal expansions: a Cauchy sequence $\delta : \mathbb{N} \to \mathbb{Q}$ in which each term adds one new correct decimal place.
- 3. Lower Dedekind cuts: a set $\emptyset \subsetneq \lambda \subsetneq \mathbb{Q}$ such that $\forall s \in \mathbb{Q} \forall s' \in \mathbb{Q} ((s \in \lambda \land s' \notin \lambda) \rightarrow s < s').$
- 4. Open Dedekind cuts: a lower Dedekind cut σ with no greatest element.

Representations of 1

$$\rho: \qquad 0, \frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, \dots$$

- δ : 1, 1.0, 1.00, 1.000, 1.0000, ...
- δ : .9, .99, .999, .9999, .99999, ...

$$\lambda$$
: $\mathbb{Q} \cap (-\infty, 1]$

$$\sigma: \qquad \mathbb{Q} \cap (-\infty, 1)$$

An early theorem of computable analysis

Theorem 1. Any computable real in any of the preceding representations can be converted to a computable real in any of the other representations.

This was observed by: Raphael Robinson [6], John Myhill [4], and H.G. Rice [5]

To formalize this result in reverse mathematics, it's good to specify what we mean by "conversion." Subsystems of second order arithmetic for reverse math

RCA₀: First order arithmetic with induction restricted to Σ_1^0 formulas plus set comprehension for Δ_1^0 sets.

WKL₀: All axioms of RCA₀
plus Weak König's Lemma:
 "Every infinite 0–1 tree has an infinite path."

 $\label{eq:ACA_0:ACA_0:ACA_0} ACA_0: \mbox{ All axioms of } RCA_0 \mbox{ plus comprehension for arithmetically definable sets.}$

Equality between representations of reals

Between Cauchy sequences / decimal expansions:

$$\rho_1 = \rho_2 \text{ means: } \forall k \ |\rho_1(k) - \rho_2(k)| \le 2^{-k+1}$$

Also, $\rho_1 < \rho_2$ means $\exists k \ (\rho_1(k) + 2^{-k+1} < \rho_2(k))$

Between pairs of cuts:

 $\lambda_1 = \lambda_2$ means these sets differ in at most one element.

Between Cauchy sequences and cuts:

$$\begin{split} \lambda &= \rho \text{ means:} \\ \forall k \forall s \forall s' \left((s \in \lambda \land s' \notin \lambda) \rightarrow [s, s'] \cap [\rho(k) - 2^{-k}, \rho(k) + 2^{-k}] \neq \emptyset \right). \\ (\text{Every closed interval containing } \lambda \text{ meets every closed ball} \\ \text{containing } \rho.) \end{split}$$

Reverse math of converting single reals

Theorem 2 (RCA₀). Given any two forms of representations, if α is a real in the first representation, then there is a real β in the second representation such that $\alpha = \beta$.

Comments on the proof:

A good strategy is: open cuts \rightarrow Dedekind cuts \rightarrow decimal expansions \rightarrow rapidly converging Cauchy sequences \rightarrow open cuts. The first four steps are "uniform," but the last step is different.

The last step: Suppose ρ is a rapidly converging Cauchy sequence. If ρ is rational, let σ be the rationals less than ρ . Otherwise, for every rational q, either $q < \rho$ or $\rho < q$. For each q, find the witness and build σ appropriately.

Capitalizing on the uniformity Sequences!

Theorem 3 (RCA₀). If $\langle \mu_i \rangle_{i \in \mathbb{N}}$ is a sequence of reals in a representation in the following list, then for any representation appearing lower in the list there is a sequence $\langle \tau_i \rangle_{i \in \mathbb{N}}$ in that representation such that for all $i \in \mathbb{N}$, $\mu_i = \tau_i$.

open cuts,

Dedekind cuts,

decimal expansions,

rapidly converging Cauchy sequences.

What about the last step? Nonuniformity demands additional comprehension...

Theorem 4 (RCA₀). The following is equivalent to ACA_0 :

If $\langle \rho_i \rangle_{i \in \mathbb{N}}$ is a sequence of rapidly converging Cauchy sequences, then there is a sequence $\langle \sigma_i \rangle_{i \in \mathbb{N}}$ of open cuts such that for every $i \in \mathbb{N}$, $\rho_i = \sigma_i$.

The preceding theorem follows easily from:

Theorem 5 (RCA_0). The following is equivalent to ACA_0 :

If $\langle \lambda_i \rangle_{i \in \mathbb{N}}$ is a sequence of Dedekind cuts, then there is a sequence $\langle \sigma_i \rangle_{i \in \mathbb{N}}$ of open cuts such that for every $i \in \mathbb{N}, \ \lambda_i = \sigma_i$.

Part of the proof of Theorem 5

We want to show: Dedekind cuts \rightarrow open cuts implies ACA₀. Suppose $f : \mathbb{N}^+ \rightarrow \mathbb{N}$ is an injection. We'll find its range. Define the sequence $\langle \lambda_i \rangle_{i \in \mathbb{N}}$ of Dedekind cuts by putting $q \in \mathbb{Q}$ in λ_i if and only if:

$$q \leq 0$$
 or $q > 0$ and $(\exists t < 1/q)(f(t) = i)$.

Informally,

if $i \notin \text{Range}(f)$, then $\lambda_i = (-\infty, 0] \cap \mathbb{Q}$, and if f(t) = i, then $\lambda_i = (-\infty, 1/t) \cap \mathbb{Q}$.

If σ_i is an open cut with $\sigma_i = \lambda_i$, then $i \in \text{Range}(f)$ if and only if $0 \in \sigma_i$.

Summary of conversion results for sequences

$\mathrm{from} \setminus^{\mathrm{to}}$	ρ	δ	λ	σ
ρ	RCA ₀	WKL ₀	WKL ₀	ACA ₀
δ	RCA ₀	RCA_0	WKL_0	ACA_0
λ	RCA_0	RCA_0	RCA_0	ACA_0
σ	RCA ₀	RCA_0	RCA_0	RCA_0

Legend:

- $\rho :$ Rapidly converging Cauchy sequences
- δ : Decimal expansions
- λ : Dedekind cuts
- $\sigma :$ Open cuts

Mostowski [3] gave computable counterexamples corresponding to the reversals for $(\delta \to \sigma)$ and $(\rho \to \delta)$.

Another example

Theorem 6 (RCA_0). The following are equivalent:

- 1. WKL₀.
- 2. If $\langle \rho_i \rangle_{i \in \mathbb{N}}$ is a sequence of rapidly converging Cauchy sequences then there is a sequence $\langle \delta_i \rangle_{i \in \mathbb{N}}$ of decimal expansions such that for each $i \in \mathbb{N}$, $\rho_i = \delta_i$.

Idea behind reversal: Separate ranges of f and g

If
$$f(t) = i$$
, let $\rho_i(t) = 1 + 10^{-t}$.
If $g(t) = i$, let $\rho_i(t) = 1 - 10^{-t}$.
The set $S = \{i \mid \delta_i(0) = 1\}$ separates the ranges.

Pesky rationals

Conversions of sequences of reals						
$\operatorname{from} \setminus^{\operatorname{to}}$	ho	δ	λ	σ		
ρ	RCA ₀	WKL ₀	WKL ₀	ACA ₀		
δ	RCA_0	RCA_0	WKL_0	ACA_0		
λ	RCA_0	RCA_0	RCA_0	ACA_0		
σ	RCA_0	RCA_0	RCA_0	RCA_0		

All the reversals shown in the chart hold even when the sequences are restricted to sequences of rationals.

A strictly irrational sequence in any format can be converted to a sequence in any other format, using only RCA_0 .

Mostowski and change of basis

Theorem 7 (RCA₀). If $c \mid b^n$ for some n, then for every sequence $\langle \beta_i \rangle_{i \in \mathbb{N}}$ of base b expansions there is a sequence $\langle \gamma_i \rangle_{i \in \mathbb{N}}$ of base c expansions such that for all $i \in \mathbb{N}$, $\beta_i = \gamma_i$.

Theorem 8 (RCA₀). If for all n we have $c \nmid b^n$, then the following are equivalent:

- 1. WKL_0 .
- 2. For every sequence $\langle \beta_i \rangle_{i \in \mathbb{N}}$ of base *b* expansions there is a sequence $\langle \gamma_i \rangle_{i \in \mathbb{N}}$ of base *c* expansions such that for all $i \in \mathbb{N}$, $\beta_i = \gamma_i$.

Concrete examples

Theorem 9 (RCA₀). For every sequence $\langle \beta_i \rangle_{i \in \mathbb{N}}$ of base 10 expansions there is a sequence $\langle \gamma_i \rangle_{i \in \mathbb{N}}$ of base 2 expansions such that for all $i \in \mathbb{N}$, $\beta_i = \gamma_i$.

Theorem 10 (RCA_0). The following are equivalent:

- 1. WKL₀.
- 2. For every sequence $\langle \beta_i \rangle_{i \in \mathbb{N}}$ of base 2 expansions there is a sequence $\langle \gamma_i \rangle_{i \in \mathbb{N}}$ of base 10 expansions such that for all $i \in \mathbb{N}$, $\beta_i = \gamma_i$.

Underlying cause of this behavior: $\frac{1}{2} = .5$ (base 10), but $\frac{1}{10} = .000\overline{1100}$ (base 2). Computable analysis and constructive analysis

Examples of related results:

- 1. Every computable sequence of base 10 expansions can be converted to a computable sequence of base 2 expansions.
- There is a computable sequence of base 2 expansions with no termwise equal computable sequence of base 10 expansions.
- 3. Every computable sequence of base 2 expansions can be converted to a low sequence of base 10 expansions.
- 4. There is a base 2 expansion that cannot be constructively converted into a base 10 expansion.

Bibliography

- [1] Richard Dedekind, Essays on the theory of numbers. I:Continuity and irrational numbers. II:The nature and meaning of numbers, Authorized translation by Wooster Woodruff Beman, Dover Publications Inc., New York, 1963. MR0159773 (28 #2989)
- [2] Jeffry L. Hirst, Representations of reals in reverse mathematics, http://www.mathsci.appstate.edu/~jlh/bib/pdf/rreps.pdf (submitted).
- [3] A. Mostowski, On computable sequences, Fund. Math. 44 (1957), 37–51. MR0091242 (19,934a)
- [4] John Myhill, Criteria of constructibility for real numbers, J. Symbolic Logic 18 (1953), 7–10. MR0054549 (14,938e)
- [5] H. G. Rice, *Recursive real numbers*, Proc. Amer. Math. Soc. 5 (1954), 784–791. MR0063328 (16,104a)
- [6] Raphael M. Robinson, Review of: Rekursive Funktionen by Rózsa Péter, J. Symb. Logic 16 (1951), 280–282.