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Abstract

These notes include proofs of the results stated in the talk Reverse
mathematics and Brouwer’s fixed point theorem, given at the annual
meeting of the ASL in Urbana-Champaign on June 4, 2000.

In [1], Arnold gives a short proof of the fundamental theorem of algebra
using Brouwer’s fixed point theorem. From a reverse mathematics viewpoint,
the fundamental theorem of algebra is provable in RCA0 [4], while Brouwer’s
theorem is equivalent to the stronger system WKL0 [3]. In §1, a computable
restriction of Brouwer’s theorem will be presented. In §2, this computable
restriction is formalized in RCA0, yielding a corresponding formalization of
Arnold’s proof using only RCA0.

1 A restriction of Brouwer’s theorem

This section contains the definitions needed to state a computable restric-
tion of Brouwer’s fixed point theorem, and the statement and proof of the
restricted theorem. We begin with the definitions.

The symbol I2 denotes the unit square, [0, 1]× [0, 1], and ∂I2 denotes the
boundary of the square. We will encode computable reals using rapidly con-
vergent Cauchy sequences, in the same fashion used in reverse mathematics
[4]. Similarly, we will say that a function is a computably coded continu-
ous function if it is represented by a set of 5-tuples in the same fashion as
a continuous function code in reverse mathematics ([4], especially page 85).
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Näıvely, each 5-tuple represents a pair of neighborhoods of rationals, where
the first neighborhood is mapped into the second by the function. When f is
a computably coded continuous function, the notation f : I2 → I2 indicates
that f is defined at each computable point in I2.

Suppose that f is a computably coded continuous function defined on
a closed domain X. A computable modulus of uniform continuity for f
is a computable function h : N → N such that for each n ∈ N and each
x, y ∈ Q ∩X, if |x− y| < 2−h(n) then |f(x)− f(y)| < 2−n.

Given a computably coded continuous function f on a domain X, we
can define its extension f? by setting f ?(a) = limx→a f(x) for each a ∈ X
where the limit exists, and saying that f ? is undefined at other points in X.
Note that f ? is not a computable function, and will generally be defined at
noncomputable points in X.

Now we have enough terminology to state our restricted version of Brouwer’s
theorem.

Theorem 1. Suppose that

• f : I2 → I2 is a computably coded continuous function,

• f has a computable modulus of uniform continuity, and

• f ? has finitely many fixed points.

Then f has a computable fixed point.

Proof. If f has a computable modulus of uniform continuity, then f ? is con-
tinuous, total on I2, and maps I2 into I2. By Brouwer’s fixed point theorem,
f? has at least one fixed point. Since f ? has finitely many fixed points, it
must have an isolated fixed point. It remains to show that each isolated fixed
point of f ? is a computable fixed point of f . This is done in the following
lemma.

Lemma 2. Suppose that

• f : I2 → I2 is a computably coded continuous function, and

• f has a computable modulus of uniform continuity.

Then every isolated fixed point of f ? is a computable fixed point of f .
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Proof. Suppose f satisfies both hypotheses. Define g : I2 → I2 by g(z) =
|f(z) − z|. Note that g is a computably coded continuous function from I2

to R, g has a computable modulus of uniform continuity, and g? has finitely
many zeros corresponding to the fixed points of f ?. Furthermore, these zeros
are the minima of g? on I2.

Suppose that z0 is an isolated fixed point of f ?, and consequently an
isolated zero of g?. Then there are rational numbers a0, a′0, b0, and b′0 such
that z0 is the only zero of g? in the rectangle R defined by a0 ≤ x ≤ a′0 and
b0 ≤ y ≤ b′0. Corresponding to each k ∈ N, we can construct a rectangle Rk

as follows. Set ε = 2−k and using the modulus of uniform continuity for g,
find a δ = 2−m so that if |z1 − z2| < δ, then |g(z1) − g(z2)| < ε/2. Locate
lattice points in R at integer multiples of δ from the corner point (a0, b0).
For each lattice point z1, use the function code for g to find an estimate
for g(z1) of the form s± ε/2. Combining the estimate with the information
from the modulus of uniform continuity, we find that for each lattice point
z1, and for every point z such that |z − z1| < δ, s− ε < g(z) < s + ε. Mark
those δ neighborhoods of lattice points where s − ε < 0 < s + ε. Let Rk

be the smallest rectangle contained in R that contains all of the marked δ
neighborhoods and has lattice points at its corners. Note that because the
lattice points of Rj are included in those of Rj+1, Rj is a subset of Rj+1.

As k becomes large, the vertical and horizontal dimensions of the Rks
tend to 0. To see this, fix some ε > 0, and suppose that for all k, Rk is
not contained in the ε neighborhood centered at z0, the isolated zero of g.
Then for each n ∈ N there is a point zn in R but outside this neighborhood
that satisfies |g(z)| < 2−n. By the compactness of R, this sequence has a
convergent subsequence with some limit point p in R. By the continuity of
g? on I2, we must have g(p) = 0, contradicting the claim that z0 is the only
zero of g? in R.

Let ak, a
′
k, bk and b′k denote the corner points of Rk. By nested interval

convergence, the reals p1 = limk→∞ ak = limk→∞ a
′
k and p2 = limk→∞ bk =

limk→∞ b
′
k are computable. Thus z0 = (p1, p2) is a computable zero of g and

a computable fixed point of f .

The previous result leaves us with a number of computability-theoretic
questions:

• Does every computably coded continuous function f : I2 → I2 such
that f? is total have a computable fixed point?
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• Does every computably coded continuous function from I2 to I2 with
a computable modulus of continuity have a computable fixed point?
Since a computable modulus of continuity guarantees the totality of
the extension, this is a special case of the preceding question.

• Given an infinite computable 0− 1 tree T with no computable infinite
paths, is there a computably coded continuous function f such that f ?

is total and there is a degree preserving isomorphism between the fixed
points of f ? and the paths through T?

In [2], Orevkov constructs a computably coded continuous function f :
I2 → I2 such that f has no computable fixed point. (This construction also
appears in [3].) This map consists of a retract of the computable elements of
I2 to ∂I2 followed by a rotation of the boundary of the square. Since there is
no continuous retract of all of I2 to ∂I2, Orevkov’s map does not have a total
extension. This can also be shown by the following argument. Suppose, by
way of contradiction, that Orevkov’s function has a total extension f ?. Then
f? is a continuous function from (all of) I2 to ∂I2. Clearly, any fixed points
of f? must occur on ∂I2. However, because of the rotation used in defining
Orevkov’s function, and since f ? is a continuous extension of that function, f ?

has no fixed points on ∂I2. Summarizing, f ? is a continuous function from
∂I2 to ∂I2 with no fixed points, contradicting Brouwer’s theorem. Thus,
f ? is not total. The preceding argument also shows that the extension of
Orevkov’s function has no fixed points, computable or noncomputable.

If we consider only those functions mapping I2 to ∂I2, then we can guar-
antee the existence of computable fixed points. To simplify the proof of the
following theorem, we will state it for D, the closed unit disk. The theorem
holds with D replaced by I2.

Theorem 3. Suppose that

• f : D → ∂D is a computably coded continuous function, and

• f ? is total.

Then f has a computable fixed point.

Proof. By the Brouwer fixed point theorem, f ? must have a fixed point. Since
f? : D → ∂D, this fixed point must occur on the boundary of D. Let θ :
∂D → [0, 2π) be an isomorphism of D onto radian angles associated with the
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elements of D. Let g(x) = θ(f(θ−1(x))). Intuitively, g(x) is the restriction
of f to ∂D, with the domain and range expressed as radian measure. Since
f ? has a fixed point on ∂D, g? has a fixed point. If the graph of g?(x)
never crosses the line y = x, then there is a continuous perturbation h :
[0, 2π) → [−1, 1] such that (g? + h)(x) has no fixed points. In this case,
the function f ?(z) + h(θ(f ?(z))) is a continuous map of D into ∂D with no
fixed points, contradicting Brouwer’s fixed point theorem. Thus, the graph
of g?(x) must cross the line y = x. Applying the computable version of the
intermediate value theorem to g in some small neighborhood where g?(x) = x
yields a computable fixed point for g which is also a computable fixed point
for f .

The preceding theorem shows that the single computable fixed point can-
not be eliminated from the following example.

Theorem 4. Given any infinite computable tree T with no computable paths,
there is a computably coded continuous function f : I2 → ∂I2 such that f ?

is total, the only computable fixed point of f ? is (0, 0), and there is a degree
preserving isomorphism between the noncomputable fixed points of f ? and the
infinite paths through T .

Sketch of proof. Fix T . Construct a computably coded continuous function
g : [0, 1]→ [0, 1] such that the maximum of g is 1, and there is a degree pre-
serving isomorphism between {x | g?(x) = 1} and the infinite paths through
T . Define f(x, y) = (x · g(x), 0). The only fixed points of f occur where
y = 0 and either x = 0 or g(x) = 1.

2 Formalizing the restriction

Our original goal was to find a restricted version of the Brouwer fixed point
theorem that would allow us to carry out Arnold’s proof of the fundamental
theorem of algebra in RCA0. Because Theorem 1 makes reference to f ?, we
cannot use it directly in RCA0. However, the following statement is provable
in RCA0 and captures the content of 1.

Theorem 5. (RCA0) Suppose that

• f : I2 → I2 is a total continuous function,

• f has a modulus of uniform continuity, and
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• there is an integer m and sequences 〈nk〉n∈N and 〈〈Bk,i〉i<mk〉k∈N such
that for each k, mk < m, each Bk,i is an open ball of radius at most
2−k contained in exactly one ball in the list 〈Bk−1,i〉i<mk−1

, and for every
rational point z exterior to ∪i<mkBk,i we have |f(z)− z| > 2−nk .

Then f has a fixed point in I2.

Sketch of proof. Applying nested interval convergence to the balls, locate
potential fixed points of f . Suppose that none of these potential fixed points
are actual fixed points. Then there is a value M such that for all z ∈ I2,
|f(z)− z| > 2−m, contradicting an approximation result of Orevkov [2] that
can be proved in RCA0.

Note that Arnold’s proof of the fundamental theorem of algebra can be
carried out in RCA0 using Theorem 5. Given a polynomial, a continuous
mapping from a disk to itself is defined in exactly the same fashion as in
[1]. Sequences as described in Theorem 5 can be found from the polynomial.
Applying the theorem yields a fixed point, which is also a root of the original
polynomial.

Of course, no one would actually want to prove the fundamental theorem
of algebra in this fashion. Indeed, the most obvious way to prove the existence
of the sequences for the third hypothesis of Theorem 5 is to prove and use
the fundamental theorem of algebra.
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