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Reverse Mathematics

Goal: Determine exactly which set existence axioms are
needed to prove familiar theorems.

Method: Prove results of the form

RCA0 ` AX↔ THM

where:

• RCA0 is a weak axiom system,
• AX is a set existence axiom selected from

a small hierarchy of axioms, and
• THM is a familiar theorem.



Why bother?

Work in reverse mathematics can:

• precisely categorize the logical strength of theorems.

• differentiate between different proofs of theorems.

• provide insight into the foundations of mathematics.

• utilize and contribute to work in many subdisciplines of
mathematical logic – including proof theory, computability
theory, models of arithmetic, etc.



RCA0

Language:
Integer variables: x , y , z Set variables: X , Y , Z

Axioms:
basic arithmetic axioms

(0, 1, +, ×, =, and < behave as usual.)
Restricted induction

(ψ(0) ∧ ∀n(ψ(n)→ ψ(n + 1)))→ ∀nψ(n)
where ψ(n) has (at most) one number quantifier.

Recursive set comprehension
If θ ∈ Σ0

1 and ψ ∈ Π0
1, and ∀n(θ(n)↔ ψ(n)),

then there is a set X such that ∀n(n ∈ X ↔ θ(n))



Models and coding

• The smallest ω-model of RCA0 consists of the usual
natural numbers and the computable sets of natural
numbers. We write M = 〈ω,REC〉.

• Elements of countable collections of objects can be
identified with natural numbers.

• RCA0 can prove the arithmetic associated with pairing
functions.

• Sets of pairs correspond to functions and/or countable
sequences.

• Many mathematical concepts can be encoded in terms of
such sequences. Second order arithmetic is remarkably
expressive.
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WKL0

Weak König’s Lemma

Statement: Big very skinny trees are tall.

More formally: If T is an infinite tree in which each node is
labeled 0 or 1, then T contains an infinite path.

The subsystem WKL0 is RCA0 plus Weak König’s Lemma.

There is an infinite computable 0− 1 tree with no infinite
computable path, so 〈ω,REC〉 is not a model of WKL0.

Conclusion: RCA0 6`WKL0



Finally! Some reverse mathematics!

Theorem

(RCA0) The following are equivalent:

1. WKL0.

2. Every graph with no cycles of odd length can be 2-colored.



WKL0 implies the 2-coloring theorem

Suppose G is a graph with vertices v0, v1, v2, . . . and no
odd cycles.

We need to use a 0− 1 tree to cook up a 2-coloring of G.

Let T be the tree consisting of sequences of the form
〈i0, i1, . . . , in〉 where the sequence is a correct 2-coloring of
the subgraph of G on the vertices v0, v1, . . . , vn.

Since G has no odd cycles, RCA0 proves T contains
infinitely many nodes.

Any path through T is the desired 2-coloring.
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A tool for reversals

Theorem

(RCA0) The following are equivalent:

1. WKL0.

2. If f and g are injective functions from N into N and
Ran(f ) ∩ Ran(g) = ∅, then there is a set X such that
Ran(f ) ⊂ X and X ∩ Ran(g) = ∅.

Comment: X in (2) is like a separating set for disjoint
computably enumerable sets.



The 2-coloring theorem implies WKL0. A reversal!

Suppose we are given f and g with Ran(f ) ∩ Ran(g) = ∅.

If, for example, f (3) = 0 and g(2) = 2, we will construct the
graph G as follows:

Add straight links for f and and shifted links for g.
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A few other theorems equivalent to WKL0.

Theorem
(RCA0) The following are equivalent:

1. WKL0.
2. Every ctn. function on [0,1] is bounded. (Simpson)
3. The closed interval [0,1] is compact. (Friedman)
4. Every closed subset of Q ∩ [0,1] is compact. (Hirst)
5. Existence theorem for solutions to ODEs. (Simpson)
6. The line graph of a bipartite graph is bipartite. (Hirst)
7. If 〈xn〉n∈N is a sequence of real numbers then there is a

sequence of natural numbers 〈in〉n∈N such that for each j,
xij = min{xn | n ≤ j}. (Hirst)



Arithmetical Comprehension

ACA0 is RCA0 plus the following comprehension scheme:

For any formula θ(n) with only number quantifiers, the set
{n ∈ N | θ(n)} exists.

The minimum ω model of ACA0 contains all the arithmetically
definable sets.

Note: WKL0 6` ACA0, but ACA0 `WKL0.



ACA0 and Graph Theory

Theorem
(RCA0) The following are equivalent:

1. ACA0

2. Every graph can be decomposed into its connected
components.

Observation: The proof of “every graph with no odd cycles can
be two colored” that starts by decomposing the graph into its
connected components makes use of the strong axiom ACA0.
That proof is provably distinct from our proof in WKL0.
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2. Bolzano-Weierstraß theorem. (Friedman)
3. Cauchy sequences converge. (Simpson)
4. Ramsey’s theorem for triples. (Simpson)

General rule of thumb: ACA0 suffices for undergraduate math.

RCA0 proves transfinite induction for arithmetical formulas
implies ACA0. (Hirst)

Conclusion: All undergraduate math can be done via transfinite
induction arguments.
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Ramsey’s theorem on trees

RT1: If f : N→ k then there is a c ≤ k and an infinite set H
such that ∀n ∈ H f (n) = c.

TT1: For any finite coloring of 2<N, there is a monochromatic
subtree order-isomorphic to 2<N.

These results extend to colorings of n-tuples.



TTn
k parallels RTn

k

TTn
k : For any k coloring of the n-tuples of comparable nodes in

2<N, there is a color and a subtree order-isomorphic to 2<N in
which all n-tuples of comparable nodes have the specified color.

Note: RTn
k is an easy consequence of TTn

k

Results in Chubb, Hirst, and McNichol:
• There is a computable coloring with no Σ0

n monochromatic
subtree. (Free.)

• Every computable coloring has a Π0
n monochromatic

subtree. (Not free.)
• For n ≥ 3 and k ≥ 2, RCA0 ` TTn

k ↔ ACA0.



TT1 and TT2 are problematic

RCA0+Σ0
2 − IND can prove TT1.

RCA0 + RT1 does not suffice to prove TT1.
Corduan, Groszek, and Mileti

Question: Does TT1 imply Σ0
2 − IND?

RCA0 + RT2 does not imply ACA0. (Seetapun)

Does RCA0 + TT2 imply ACA0?
Does RCA0 + TT2 imply WKL0?
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