Introduction to Reverse Mathematics

Jeff Hirst Appalachian State University Boone, NC

November 6, 2009

Reverse Mathematics: Foundations and Applications University of Chicago, November 6-8, 2009

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Reverse Mathematics

Goal: Determine exactly which set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form

$\mathsf{RCA}_0 \vdash \boldsymbol{AX} \leftrightarrow \boldsymbol{THM}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

where:

- RCA₀ is a weak axiom system,
- **AX** is a set existence axiom selected from a small hierarchy of axioms, and
- **THM** is a familiar theorem.

Why bother?

Work in reverse mathematics can:

- precisely categorize the logical strength of theorems.
- differentiate between different proofs of theorems.
- provide insight into the foundations of mathematics.
- utilize and contribute to work in many subdisciplines of mathematical logic – including proof theory, computability theory, models of arithmetic, etc.

(日) (日) (日) (日) (日) (日) (日)

RCA₀

Language:

Integer variables: x, y, z Set variables: X, Y, Z

Axioms:

basic arithmetic axioms

(0, 1, +, \times , =, and < behave as usual.)

Restricted induction

$$\psi(\mathbf{0}) \land \forall n(\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n\psi(n)$$

where $\psi(n)$ has (at most) one number quantifier.

Recursive set comprehension

If $\theta \in \Sigma_1^0$ and $\psi \in \Pi_1^0$, and $\forall n(\theta(n) \leftrightarrow \psi(n))$, then there is a set X such that $\forall n(n \in X \leftrightarrow \theta(n))$

The smallest ω -model of RCA₀ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M} = \langle \omega, \mathsf{REC} \rangle$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The smallest ω -model of RCA₀ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M} = \langle \omega, \mathsf{REC} \rangle$.

Any theorem of RCA_0 must hold in this model. It's very useful for building intuition.

(ロ) (同) (三) (三) (三) (○) (○)

The smallest ω -model of RCA₀ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M} = \langle \omega, \mathsf{REC} \rangle$.

Any theorem of RCA₀ must hold in this model. It's very useful for building intuition.

 RCA_0 proves that if $f : \mathbb{N} \to 2$, then there is an infinite set *X* such that *f* is constant on *X*.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The smallest ω -model of RCA₀ consists of the usual natural numbers and the computable sets of natural numbers. We write $\mathfrak{M} = \langle \omega, \mathsf{REC} \rangle$.

Any theorem of RCA₀ must hold in this model. It's very useful for building intuition.

 RCA_0 proves that if $f : \mathbb{N} \to 2$, then there is an infinite set X such that f is constant on X.

The intuition gained from the minimal model is useful, but sometimes misleading.

(ロ) (同) (三) (三) (三) (○) (○)

• Elements of countable collections of objects can be identified with natural numbers.

- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.
- Sets of pairs correspond to functions and/or countable sequences.

(ロ) (同) (三) (三) (三) (○) (○)

- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.
- Sets of pairs correspond to functions and/or countable sequences.
- Many mathematical concepts can be encoded in terms of such sequences. Second order arithmetic is remarkably expressive.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Elements of countable collections of objects can be identified with natural numbers.
- RCA₀ can prove the arithmetic associated with pairing functions.
- Sets of pairs correspond to functions and/or countable sequences.
- Many mathematical concepts can be encoded in terms of such sequences. Second order arithmetic is remarkably expressive.
- Some coding can be averted: See Friedman's *Strict Reverse Mathematics* (2pm Sat) or Kohlenbach's *Higher Order Reverse Mathematics* in *Reverse Mathematics 2001*.

Theorem

(RCA₀) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that for every j, $y_j = \min\{x_i \mid i \leq j\}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

(RCA₀) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that for every j, $y_j = \min\{x_i \mid i \leq j\}$.

The idea behind the proof:

Here's a sequence of three real numbers, each represented as a rapidly converging Cauchy sequence of rationals.

(日) (日) (日) (日) (日) (日) (日)

$x_0 = \langle$	0	.1	.12	.121	.1212	$\ldots \rangle$
$x_1 = \langle$.1	.11	.101	.1001	.100	$\ldots \rangle$
$x_2 = \langle$.1	.09	.11	.101	.099	$\ldots \rangle$

Theorem

(RCA₀) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that for every j, $y_j = \min\{x_i \mid i \leq j\}$.

The idea behind the proof:

Here's a sequence of three real numbers, each represented as a rapidly converging Cauchy sequence of rationals.

$x_0 = \langle$	0	.1	.12	.121	.1212	$\ldots \rangle$
$x_1 = \langle$.1	.11	.101	.1001	.100	$\ldots \rangle$
$x_2 = \langle$.1	.09	.11	.101	.099	$\ldots \rangle$

Build the minimum y_2 by choosing the least entry in each component.

Theorem

(RCA₀) If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers, then there is a sequence $\langle y_n \rangle_{n \in \mathbb{N}}$ such that for every j, $y_j = \min\{x_i \mid i \leq j\}$.

The idea behind the proof:

Here's a sequence of three real numbers, each represented as a rapidly converging Cauchy sequence of rationals.

$x_0 = \langle$	0	.1	.12	.121	.1212	$\ldots \rangle$
$x_1 = \langle$.1	.11	.101	.1001	.100	$\ldots \rangle$
$x_2 = \langle$.1	.09	.11	.101	.099	$\ldots \rangle$

Build the minimum y_2 by choosing the least entry in each component. So $y_2 = \langle 0.09.101.1001.999... \rangle$.

WKL₀

Weak König's Lemma

Statement: Big very skinny trees are tall.

More formally: If T is an infinite tree in which each node is labeled 0 or 1, then T contains an infinite path.

The subsystem WKL₀ is RCA₀ plus Weak König's Lemma.

There is an infinite computable 0 - 1 tree with no infinite computable path, so $\langle \omega, \text{REC} \rangle$ is not a model of WKL₀.

Conclusion: $RCA_0 \not\vdash WKL_0$

• Any Scott system is a set universe for an ω model of WKL₀.

• Any Scott system is a set universe for an ω model of WKL₀.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

• $\langle \omega, \text{REC} \rangle$ is the intersection of all the ω models of WKL₀.

• Any Scott system is a set universe for an ω model of WKL₀.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- $\langle \omega, \text{REC} \rangle$ is the intersection of all the ω models of WKL₀.
- There is no minimum ω model of WKL₀.

- Any Scott system is a set universe for an ω model of WKL₀.
- $\langle \omega, \text{REC} \rangle$ is the intersection of all the ω models of WKL₀.
- There is no minimum ω model of WKL₀.
- There is a model of WKL₀ in which every set is low. (Apply the Jockusch-Soare low basis theorem.)

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- Any Scott system is a set universe for an ω model of WKL₀.
- $\langle \omega, \text{REC} \rangle$ is the intersection of all the ω models of WKL₀.
- There is no minimum ω model of WKL₀.
- There is a model of WKL₀ in which every set is low. (Apply the Jockusch-Soare low basis theorem.)

For more details, see Chapter VIII of Simpson's *Subsystems of Second Order Arithmetic*.

Finally! Some reverse mathematics!

Theorem

(RCA₀) The following are equivalent:

1. WKL₀.

2. Every graph with no cycles of odd length is bipartite.

Note: RCA₀ proves that a graph is bipartite if and only if there is a 2-coloring of its nodes.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Also, RCA₀ proves (2) for finite graphs.

Suppose *G* is a graph with vertices $v_0, v_1, v_2, ...$ and no odd cycles.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Suppose *G* is a graph with vertices $v_0, v_1, v_2, ...$ and no odd cycles.

We need to use a 0 - 1 tree to cook up a 2-coloring of G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Suppose *G* is a graph with vertices $v_0, v_1, v_2, ...$ and no odd cycles.

We need to use a 0 - 1 tree to cook up a 2-coloring of G.

Let *T* be the tree consisting of sequences of the form $\langle i_0, i_1, \ldots, i_n \rangle$ where the sequence is a correct 2-coloring of the subgraph of *G* on the vertices v_0, v_1, \ldots, v_n .

Since *G* has no odd cycles, RCA_0 proves *T* contains infinitely many nodes.

Suppose *G* is a graph with vertices $v_0, v_1, v_2, ...$ and no odd cycles.

We need to use a 0 - 1 tree to cook up a 2-coloring of *G*.

Let *T* be the tree consisting of sequences of the form $\langle i_0, i_1, \ldots, i_n \rangle$ where the sequence is a correct 2-coloring of the subgraph of *G* on the vertices v_0, v_1, \ldots, v_n .

Since *G* has no odd cycles, RCA_0 proves *T* contains infinitely many nodes.

Any path through T is the desired 2-coloring.

A tool for reversals

Theorem

(RCA₀) The following are equivalent:

1. WKL₀.

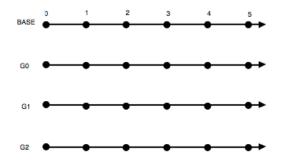
2. If f and g are injective functions from \mathbb{N} into \mathbb{N} and $Ran(f) \cap Ran(g) = \emptyset$, then there is a set X such that $Ran(f) \subset X$ and $X \cap Ran(g) = \emptyset$.

(ロ) (同) (三) (三) (三) (○) (○)

Comment: X in (2) is like a separating set for disjoint computably enumerable sets.

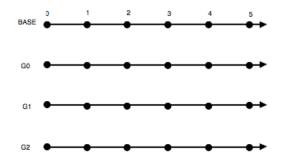
Suppose we are given *f* and *g* with $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(2) = 2, we will construct the graph *G* as follows:



Suppose we are given *f* and *g* with $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(2) = 2, we will construct the graph *G* as follows:

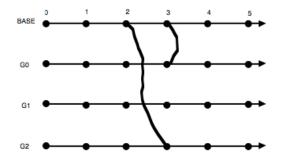


(日) (日) (日) (日) (日) (日) (日)

Add straight links for *f* and and shifted links for *g*.

Suppose we are given *f* and *g* with $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(2) = 2, we will construct the graph *G* as follows:

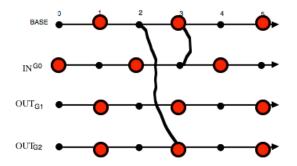


Add straight links for *f* and and shifted links for *g*, and 2-color.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Suppose we are given *f* and *g* with $Ran(f) \cap Ran(g) = \emptyset$.

If, for example, f(3) = 0 and g(2) = 2, we will construct the graph *G* as follows:



Add straight links for *f* and and shifted links for *g*, and 2-color.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A few other theorems equivalent to WKL₀.

Theorem

(RCA₀) The following are equivalent:

- 1. WKL₀.
- 2. Every ctn. function on [0, 1] is bounded. (Simpson)
- 3. The closed interval [0, 1] is compact. (Friedman)
- 4. Every closed subset of $\mathbb{Q}\cap [0,1]$ is compact. (Hirst)
- 5. Existence theorem for solutions to ODEs. (Simpson)
- 6. The line graph of a bipartite graph is bipartite. (Hirst)
- 7. If $\langle x_n \rangle_{n \in \mathbb{N}}$ is a sequence of real numbers then there is a sequence of natural numbers $\langle i_n \rangle_{n \in \mathbb{N}}$ such that for each *j*, $x_{i_j} = \min\{x_n \mid n \le j\}$. (Hirst)

Arithmetical Comprehension

 ACA_0 is RCA_0 plus the following comprehension scheme:

For any formula $\theta(n)$ with only number quantifiers, the set $\{n \in \mathbb{N} \mid \theta(n)\}$ exists.

The minimum ω model of ACA₀ contains all the arithmetically definable sets.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Note: WKL₀ \nvdash ACA₀, but ACA₀ \vdash WKL₀.

ACA₀ and Graph Theory

Theorem (RCA₀) *The following are equivalent:*

- 1. ACA₀
- 2. Every graph can be decomposed into its connected components.

Half of the proof: To prove that 1) implies 2), let *G* be a graph with vertices $v_0, v_1, ...$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

ACA₀ and Graph Theory

Theorem (RCA₀) *The following are equivalent:*

- 1. ACA₀
- 2. Every graph can be decomposed into its connected components.

Half of the proof: To prove that 1) implies 2), let *G* be a graph with vertices $v_0, v_1, ...$

Define *f* by letting f(n) be the least *j* such that there is a path from v_n to v_j .

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

ACA₀ and Graph Theory

Theorem (RCA₀) *The following are equivalent:*

- 1. ACA₀
- 2. Every graph can be decomposed into its connected components.

Half of the proof: To prove that 1) implies 2), let *G* be a graph with vertices $v_0, v_1, ...$

Define *f* by letting f(n) be the least *j* such that there is a path from v_n to v_j .

By ACA₀, *f* exists. *f* is the desired decomposition.

A tool for reversals to ACA₀

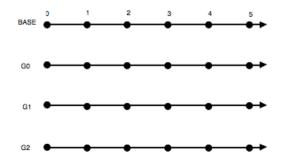
Theorem (RCA₀) The following are equivalent: 1. ACA₀ 2. If $f : \mathbb{N} \to \mathbb{N}$ is 1-1, then Ran(f) exists.

Item (2) is analogous to asserting the existence of the Turing jump.

To prove that the graph decomposition theorem implies ACA_0 , we want to use a graph decomposition to calculate the range of a function.

Suppose we are given an injection *f*.

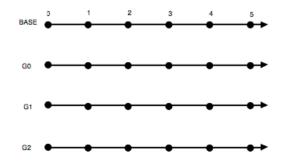
If, for example, f(0) = 2 and f(1) = 0, we will construct the graph *G* as follows:



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Suppose we are given an injection f.

If, for example, f(0) = 2 and f(1) = 0, we will construct the graph *G* as follows:

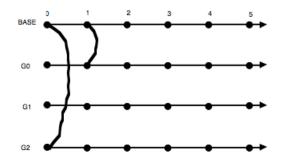


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Add links for each value of f.

Suppose we are given an injection *f*.

If, for example, f(0) = 2 and f(1) = 0, we will construct the graph *G* as follows:

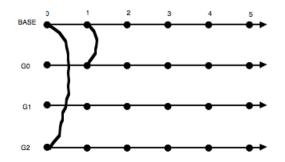


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Add links for each value of f.

Suppose we are given an injection *f*.

If, for example, f(0) = 2 and f(1) = 0, we will construct the graph *G* as follows:

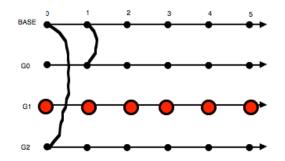


◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Add links for each value of f.Decompose G.

Suppose we are given an injection *f*.

If, for example, f(0) = 2 and f(1) = 0, we will construct the graph *G* as follows:



The range of *f* is computable from the decomposition.

Theorem

(RCA₀) The following are equivalent:

- $1. \ ACA_0.$
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (RCA₀) *The following are equivalent:*

- 1. ACA₀.
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

General rule of thumb: ACA₀ suffices for undergraduate math.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (RCA₀) *The following are equivalent:*

- 1. ACA₀.
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

General rule of thumb: ACA₀ suffices for undergraduate math.

 RCA_0 proves transfinite induction for arithmetical formulas is equivalent to ACA_0 . (Hirst and Simpson)

Theorem (RCA₀) *The following are equivalent:*

- 1. ACA₀.
- 2. Bolzano-Weierstraß theorem. (Friedman)
- 3. Cauchy sequences converge. (Simpson)
- 4. Ramsey's theorem for triples. (Simpson)

General rule of thumb: ACA₀ suffices for undergraduate math.

 RCA_0 proves transfinite induction for arithmetical formulas is equivalent to ACA_0 . (Hirst and Simpson)

Conclusion: All undergraduate math can be done with transfinite induction arguments.

Arithmetical Transfinite Recursion

 ATR_0 consists of RCA₀ plus axioms that allow iteration of arithmetical comprehension along any well ordering. This allows transfinite constructions.

A tool for proofs:

Theorem (ATR₀) If $\psi(X)$ is a Σ_1^1 formula that is only satisfied by well ordered sets, then there is a well ordering β such that $\psi(X)$ implies $X < \beta$.

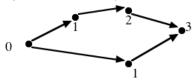
A tool for reversals:

Theorem

(RCA₀) ATR₀ is equivalent to "If α and β are well orderings, then $\alpha \leq \beta$ or $\beta \leq \alpha$."

ATR₀ and graph theory

A rank function for a directed acyclic graph is a function that maps the vertices onto a well ordering, preserving the ordering induced by the edges in a nice way.



Theorem

(RCA₀) The following are equivalent:

- 1. ATR_0
- 2. Every well founded directed acyclic graph with a source node has a rank function

・ロト・雨・・ヨト・ヨー うへで

Theorem (RCA₀) *The following are equivalent:*

- 1. ATR₀.
- 2. Lusin's Separation Theorem: Any two disjoint analytic sets can be separated by a Borel set. (Simpson)
- 3. Mahlo's Theorem: Given any two countable closed compact subsets of the reals, one can be homeomorphically embedded in the other. (Friedman and Hirst)
- 4. Every countable reduced Abelian p-group has an Ulm resolution. (Friedman, Simpson, and Smith)
- 5. Sherman's Inequality: If α , β , and γ are countable well orderings, then $(\alpha + \beta)\gamma \leq \alpha\gamma + \beta\gamma$. (Hirst)

Π_1^1 comprehension

The system $\Pi_1^1 - CA_0$ is RCA₀ plus the axioms asserting the existence of the set $\{n \in \mathbb{N} \mid \theta(n)\}$ for $\theta \in \Pi_1^1$. (That is, θ has one universal set quantifier and no other set quantifiers.)

A tool for reversals and some graph theory:

Theorem (RCA₀) *The following are equivalent:*

1.
$$\Pi_1^1 - CA_0$$
.

- 2. If $\langle T_i \rangle_{n \in \mathbb{N}}$ is a sequence of trees then there is a function $f : \mathbb{N} \to 2$ such that f(n) = 1 iff T_n is well founded.
- 3. For any graph H, and any sequence of graphs $\langle G_i \rangle_{i \in \mathbb{N}}$, there is a function $f : \mathbb{N} \to 2$ such that f(n) = 1 iff H is isomorphic to a subgraph of G. (Hirst and Lempp)

An abbreviated list of references

- [1] Harvey Friedman, Some systems of second order arithmetic and their use, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, 1975, pp. 235–242.
- [2] Harvey Friedman, Abstracts: Systems of second order arithmetic with restricted induction, I and II, J. Symbolic Logic 41 (1976), 557–559.
- [3] Stephen G. Simpson, *Subsystems of second order arithmetic*, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge, 2009.

Things that don't fit

Theorems are interesting when they are equivalent to one of the "big five," and also when they aren't.

- The infinite pigeon-hole principle, RT(1), is not provable in WKL₀. RT(1) is equivalent to the Σ⁰₂ bounding principle.
- The infinite pigeon-hole principle on trees, TT(1), is not provable from RT(1) (Corduan, Mileti, and Groszek). Does RT₂² prove TT(1)?
- RT(2) ∀ ACA₀ (Seetapun) and WKL₀ ∀ RT(2). Does RT(2) prove WKL₀?

(日) (日) (日) (日) (日) (日) (日)

• Full Ramsey's theorem is equivalent to ACA₀⁺ (Mileti).