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Reverse Mathematics

Goal: Determine exactly which set existence axioms are
needed to prove familiar theorems.

Method: Prove results of the form

RCA0 ` AX↔ THM

where:

• RCA0 is a weak axiom system,
• AX is a set existence axiom selected from

a small hierarchy of axioms, and
• THM is a familiar theorem.



Why bother?

Work in reverse mathematics can:

• precisely categorize the logical strength of theorems.

• differentiate between different proofs of theorems.

• provide insight into the foundations of mathematics.

• utilize and contribute to work in many subdisciplines of
mathematical logic – including proof theory, computability
theory, models of arithmetic, etc.



RCA0

Language:
Integer variables: x , y , z Set variables: X , Y , Z

Axioms:
basic arithmetic axioms

(0, 1, +, ×, =, and < behave as usual.)
Restricted induction

(ψ(0) ∧ ∀n(ψ(n)→ ψ(n + 1)))→ ∀nψ(n)
where ψ(n) has (at most) one number quantifier.

Recursive set comprehension
If θ ∈ Σ0

1 and ψ ∈ Π0
1, and ∀n(θ(n)↔ ψ(n)),

then there is a set X such that ∀n(n ∈ X ↔ θ(n))



A model of RCA0

The smallest ω-model of RCA0 consists of the usual natural
numbers and the computable sets of natural numbers.
We write M = 〈ω,REC〉.

Any theorem of RCA0 must hold in this model. It’s very useful
for building intuition.

RCA0 proves that if f : N→ 2, then there is an infinite set X
such that f is constant on X .

The intuition gained from the minimal model is useful, but
sometimes misleading.
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Comments on coding

• Elements of countable collections of objects can be
identified with natural numbers.

• RCA0 can prove the arithmetic associated with pairing
functions.

• Sets of pairs correspond to functions and/or countable
sequences.

• Many mathematical concepts can be encoded in terms of
such sequences. Second order arithmetic is remarkably
expressive.

• Some coding can be averted: See Friedman’s Strict
Reverse Mathematics (2pm Sat) or Kohlenbach’s Higher
Order Reverse Mathematics in Reverse Mathematics 2001.
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An example

Theorem
(RCA0) If 〈xn〉n∈N is a sequence of real numbers, then there is
a sequence 〈yn〉n∈N such that for every j, yj = min{xi | i ≤ j}.

The idea behind the proof:

Here’s a sequence of three real numbers, each represented as
a rapidly converging Cauchy sequence of rationals.

x0 = 〈 0 .1 .12 .121 .1212 . . . 〉
x1 = 〈 .1 .11 .101 .1001 .100 . . . 〉
x2 = 〈 .1 .09 .11 .101 .099 . . . 〉

Build the minimum y2 by choosing the least entry in each
component.
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An example

Theorem
(RCA0) If 〈xn〉n∈N is a sequence of real numbers, then there is
a sequence 〈yn〉n∈N such that for every j, yj = min{xi | i ≤ j}.

The idea behind the proof:

Here’s a sequence of three real numbers, each represented as
a rapidly converging Cauchy sequence of rationals.

x0 = 〈 0 .1 .12 .121 .1212 . . . 〉
x1 = 〈 .1 .11 .101 .1001 .100 . . . 〉
x2 = 〈 .1 .09 .11 .101 .099 . . . 〉

Build the minimum y2 by choosing the least entry in each
component. So y2 = 〈0 .09 .101 .1001 .999 . . . 〉.



WKL0

Weak König’s Lemma

Statement: Big very skinny trees are tall.

More formally: If T is an infinite tree in which each node is
labeled 0 or 1, then T contains an infinite path.

The subsystem WKL0 is RCA0 plus Weak König’s Lemma.

There is an infinite computable 0− 1 tree with no infinite
computable path, so 〈ω,REC〉 is not a model of WKL0.

Conclusion: RCA0 6`WKL0



Models of WKL0

• Any Scott system is a set universe for an ω model of WKL0.

• 〈ω,REC〉 is the intersection of all the ω models of WKL0.

• There is no minimum ω model of WKL0.

• There is a model of WKL0 in which every set is low.
(Apply the Jockusch-Soare low basis theorem.)

For more details, see Chapter VIII of Simpson’s Subsystems of
Second Order Arithmetic.
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Finally! Some reverse mathematics!

Theorem

(RCA0) The following are equivalent:

1. WKL0.

2. Every graph with no cycles of odd length is bipartite.

Note: RCA0 proves that a graph is bipartite if and only if there is
a 2-coloring of its nodes.

Also, RCA0 proves (2) for finite graphs.



WKL0 implies bipartite graph theorem

Suppose G is a graph with vertices v0, v1, v2, . . . and no
odd cycles.

We need to use a 0− 1 tree to cook up a 2-coloring of G.

Let T be the tree consisting of sequences of the form
〈i0, i1, . . . , in〉 where the sequence is a correct 2-coloring of
the subgraph of G on the vertices v0, v1, . . . , vn.

Since G has no odd cycles, RCA0 proves T contains
infinitely many nodes.

Any path through T is the desired 2-coloring.
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A tool for reversals

Theorem

(RCA0) The following are equivalent:

1. WKL0.

2. If f and g are injective functions from N into N and
Ran(f ) ∩ Ran(g) = ∅, then there is a set X such that
Ran(f ) ⊂ X and X ∩ Ran(g) = ∅.

Comment: X in (2) is like a separating set for disjoint
computably enumerable sets.



The bipartite graph theorem implies WKL0. A reversal!

Suppose we are given f and g with Ran(f ) ∩ Ran(g) = ∅.

If, for example, f (3) = 0 and g(2) = 2, we will construct the
graph G as follows:

Add straight links for f and and shifted links for g.
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The bipartite graph theorem implies WKL0. A reversal!

Suppose we are given f and g with Ran(f ) ∩ Ran(g) = ∅.

If, for example, f (3) = 0 and g(2) = 2, we will construct the
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A few other theorems equivalent to WKL0.

Theorem
(RCA0) The following are equivalent:

1. WKL0.
2. Every ctn. function on [0,1] is bounded. (Simpson)
3. The closed interval [0,1] is compact. (Friedman)
4. Every closed subset of Q ∩ [0,1] is compact. (Hirst)
5. Existence theorem for solutions to ODEs. (Simpson)
6. The line graph of a bipartite graph is bipartite. (Hirst)
7. If 〈xn〉n∈N is a sequence of real numbers then there is a

sequence of natural numbers 〈in〉n∈N such that for each j,
xij = min{xn | n ≤ j}. (Hirst)



Arithmetical Comprehension

ACA0 is RCA0 plus the following comprehension scheme:

For any formula θ(n) with only number quantifiers, the set
{n ∈ N | θ(n)} exists.

The minimum ω model of ACA0 contains all the arithmetically
definable sets.

Note: WKL0 6` ACA0, but ACA0 `WKL0.



ACA0 and Graph Theory

Theorem
(RCA0) The following are equivalent:

1. ACA0

2. Every graph can be decomposed into its connected
components.

Half of the proof: To prove that 1) implies 2), let G be a graph
with vertices v0, v1, ...

Define f by letting f (n) be the least j such that there is a path
from vn to vj .

By ACA0, f exists. f is the desired decomposition.
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A tool for reversals to ACA0

Theorem
(RCA0) The following are equivalent:

1. ACA0

2. If f : N→ N is 1-1, then Ran(f ) exists.

Item (2) is analogous to asserting the existence of the Turing
jump.

To prove that the graph decomposition theorem implies ACA0,
we want to use a graph decomposition to calculate the range of
a function.



The graph decomposition theorem implies ACA0

Suppose we are given an injection f .

If, for example, f (0) = 2 and f (1) = 0, we will construct the
graph G as follows:

Add links for each value of f .
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The graph decomposition theorem implies ACA0

Suppose we are given an injection f .

If, for example, f (0) = 2 and f (1) = 0, we will construct the
graph G as follows:

The range of f is computable from the decomposition.



Other theorems equivalent to ACA0

Theorem
(RCA0) The following are equivalent:

1. ACA0.
2. Bolzano-Weierstraß theorem. (Friedman)
3. Cauchy sequences converge. (Simpson)
4. Ramsey’s theorem for triples. (Simpson)

General rule of thumb: ACA0 suffices for undergraduate math.

RCA0 proves transfinite induction for arithmetical formulas is
equivalent to ACA0. (Hirst and Simpson)

Conclusion: All undergraduate math can be done with
transfinite induction arguments.
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Arithmetical Transfinite Recursion

ATR0 consists of RCA0 plus axioms that allow iteration of
arithmetical comprehension along any well ordering. This
allows transfinite constructions.

A tool for proofs:

Theorem
(ATR0) If ψ(X ) is a Σ1

1 formula that is only satisfied by well
ordered sets, then there is a well ordering β such that ψ(X )
implies X < β.

A tool for reversals:

Theorem
(RCA0) ATR0 is equivalent to “If α and β are well orderings,
then α ≤ β or β ≤ α.”



ATR0 and graph theory

A rank function for a directed acyclic graph is a function that
maps the vertices onto a well ordering, preserving the ordering
induced by the edges in a nice way.

Theorem
(RCA0) The following are equivalent:

1. ATR0

2. Every well founded directed acyclic graph with a source
node has a rank function



Other theorems equivalent to ATR0

Theorem
(RCA0) The following are equivalent:

1. ATR0.
2. Lusin’s Separation Theorem: Any two disjoint analytic sets

can be separated by a Borel set. (Simpson)
3. Mahlo’s Theorem: Given any two countable closed

compact subsets of the reals, one can be
homeomorphically embedded in the other. (Friedman and
Hirst)

4. Every countable reduced Abelian p-group has an Ulm
resolution. (Friedman, Simpson, and Smith)

5. Sherman’s Inequality: If α, β, and γ are countable well
orderings, then (α + β)γ ≤ αγ + βγ. (Hirst)



Π1
1 comprehension

The system Π1
1 − CA0 is RCA0 plus the axioms asserting the

existence of the set {n ∈ N | θ(n)} for θ ∈ Π1
1. (That is, θ has

one universal set quantifier and no other set quantifiers.)

A tool for reversals and some graph theory:

Theorem
(RCA0) The following are equivalent:

1. Π1
1 − CA0.

2. If 〈Ti〉n∈N is a sequence of trees then there is a function
f : N→ 2 such that f (n) = 1 iff Tn is well founded.

3. For any graph H, and any sequence of graphs 〈Gi〉i∈N,
there is a function f : N→ 2 such that f (n) = 1 iff H is
isomorphic to a subgraph of G. (Hirst and Lempp)
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Things that don’t fit

Theorems are interesting when they are equivalent to one of
the “big five,” and also when they aren’t.

• The infinite pigeon-hole principle, RT(1), is not provable in
WKL0. RT(1) is equivalent to the Σ0

2 bounding principle.
• The infinite pigeon-hole principle on trees, TT(1), is not

provable from RT(1) (Corduan, Mileti, and Groszek). Does
RT2

2 prove TT(1)?
• RT(2) 6` ACA0 (Seetapun) and WKL0 6` RT(2). Does RT(2)

prove WKL0?
• Full Ramsey’s theorem is equivalent to ACA+

0 (Mileti).
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