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Introduction: Turning sets into sequences

{3,1,0} into 〈3,1,0〉 or . . .

We can identify a set with its characteristic function:

n 3 2 1 0
f (n) 1 1 0 1

and for finite sets, identify the binary sequence with a number.

11012 = 1310

This is the canonical coding for finite sets from Soare’s text [5].
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Introduction: Turning sequences into sets

We can think of a sequence as a function:

〈3,1,0〉 is
n 0 1 2

f (n) 3 1 0

and view a function as a set of ordered pairs

{(0,3), (1,1), (2,0)}

Or we could let the set be the range of the function so

〈3,1,0,3〉 is translated into {0,1,3}
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Infinite sequences into sets
Viewpoint: The Zermelo-Fraenkel axioms for set theory.
• In ZF sequences are sets.

• Can we convert sequences (viewed as functions) into the
associated range sets?

Yes, we could use the Axiom of Replacement:

Informal version: If f (x) is a class function and D is a set then
the range set R = {f (x) | x ∈ D} exists.

Skolem-esque version: If ψ(x , y) is a formula satisfying

∀x∀y∀z((ψ(x , y)∧ψ(x , z))→ y = z)

then for every set D there is a set R such that

∀y(y ∈ R ↔ ∃x(x ∈ D ∧ψ(x , y)))
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Infinite sets into sequences
Working in ZF, can we turn sets into sequences?
• The answer depends on our concept of sequence.
• We like to have “next elements” in sequences.

• A function from a (possibly transfinite) ordinal into a set S
is certainly a sequence of elements from S.

Theorem
(ZF) Given f : α→ S define min(s) = min{β < α | f (β) = s} and
define s <f t if and only if min(s) < min(t). Then <f is a
well-ordering of S.

Theorem
ZF proves the following are equivalent:

1. Every set is the range of a sequence.
2. Every set can be well-ordered.
3. The Axiom of Choice [3]
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Sets and sequences in ZF

The Axiom of Choice is not included in ZF [3].

In set theory:
turning sequences into sets uses Axiom of Replacement
(easy in ZF)

turning sets into sequences requires Axiom of Choice
(hard – requires adding an axiom)

In set theory:
sequences contain more information than sets.



A different viewpoint: Reverse mathematics

Subsystems of second order arithmetic [4]

Basic axiom system: RCA0

• Variables for natural numbers and sets of natural numbers.
• Axioms describing 0, +, ·, etc.
• Induction for formulas with at most one number quantifier.
• Recursive comprehension axiom:

If a set is computable, then it exists.

If there is a program that can answer every question of
the form “Is n in the set?” then the set exists.
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Reverse mathematics: sets into sequences

Theorem
(RCA0) Every nonempty set is the range of some function. That
is, if S is a nonempty set, then there is a function f such that for
all s ∈ N

s ∈ S ↔ ∃n(f (n) = s).

Proof: Let s0 be the least element of S. Define f by

f (n) =


s0 if n = 0
n if n > 0 and n ∈ S
f (n − 1) if n > 0 and n /∈ S

Example: S = {2,4,5, . . . }
n 0 1 2 3 4 5 6

f (n) 2 2 2 2 4 5 ?
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Reverse mathematics: sequences into range sets

Theorem
RCA0 proves the following are equivalent:

1. ACA0 (Sets definable by arithmetical formulas exist.)
2. If f is a function then there is a set R such that for all y

y ∈ R ↔ ∃x(f (x) = y).

Note: ACA0 cannot be proved in RCA0. Computable functions
do not necessarily have computable ranges. For example, if

f (n,m) =

{
n if {n}(n) ↓m
# otherwise

then f is computable, but range(f ) ∩ N is the set of indices of
self-halting Turing machines, which is not computable.
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Reverse math and set theory

In reverse mathematics:
turning sets into sequences can be done in RCA0

turning sequences into sets requires ACA0

sets contain more information than sequences.

In set theory:
turning sequences into sets can be done in ZF
turning sets into sequences requires Axiom of Choice

sequences contain more information than sets.

Which is correct? Set theory or second order arithmetic?



Reverse math and set theory

Question: Which is correct: ZF or RCA0?

Answer: Both and neither.

• When we add axioms (ACA0 or Choice), each theory can
translate freely between sequences and sets.

• ZF and RCA0 talk about different aspects of the
mathematical cosmos.

ZF tells us about uncountable sets
and RCA0 gives us information about computability.

• Many tractable and interesting axiom systems are
incomplete. They are neither oracles nor the creations of
oracles.
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More sets into sequences in RCA0

For the set S = {2,4,5} our old algorithm gives the sequence

n 0 1 2 3 4 5 6. . .
f (n) 2 2 2 2 4 5 5. . .

We might like the sequence to look like this:

n 0 1 2 3 4 5 6. . .
f (n) 2 4 5 5 5 5 5. . .

Theorem
(RCA0) If S is a nonempty set then there is an increasing
sequence f with at most one repeated value such that for all
s ∈ N

s ∈ S ↔ ∃n(f (n) = s).



At most one repeater for one set

Theorem
(RCA0) If S is a nonempty set then there is an increasing
sequence f with at most one repeated value such that the
range of f is exactly S.

Proof: Suppose S 6= ∅ and let s0 = min S.
Define s1: If S is finite let s1 = max S, otherwise let s1 = #.
Define f : f (0) = s0 and

f (n + 1) =

{
s1 if f (n) = s1

least y ∈ S with y > f (n) otherwise.

Example: S = {2,4,5}, so s0 = 2 and s1 = 5.
n 0 1 2 3 4 5 6. . .

f (n) 2 4 5 5 5 5 5. . .
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At most one repeater for many sets

Theorem
RCA0 proves that the following are equivalent:

1. ACA0.
2. If 〈Si | i ∈ N〉 is a sequence of nonempty sets then there is

a sequence 〈fi | i ∈ N〉 of increasing sequences with at
most one repeated value such that for each i, the range of
fi is exactly Si .

Sketch of (2)→ (1): Suppose h : N→ N. We want to use (2) to
compute the range of h. For each i , put m + 1 ∈ Si iff h(m) = i .

For example:

if h(3)=2 then S2 ⊃ {0,4} and if 5 /∈ Range(h) then S5 = {0}.

The sequence 〈Si | i ∈ N〉 is computable from h. Apply (2).
i ∈ Range(h)↔ fi(1) 6= 0, so 〈fi | i ∈ N〉 computes Range(h).
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Recap:
Given a non-empty set S we can compute an increasing
sequence f with at most one repeater such that the range of f
is exactly S. (RCA0 proves the existence of the sequence for
each set.)

However, the choice of the computing algorithm depends on S,
since there is no single algorithm that works for every set.
(RCA0 can’t prove the existence of a sequence of sequences
for a sequence of sets.)

The computation of the sequence (of this type) for the set is not
uniform.

If we allow more repeaters, we can make the computation
uniform.
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