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Motivation

Goal: Explore the relationship between uniform (also called
Weihrauch) reducibility and results in reverse mathematics.

Observation: Some reducibility results and reverse
mathematics results have proofs with significant common
content.

For example, in [1], Gura, Hirst, and Mummert prove:
RCA0 ` FC1↔ FC3 and FC1 ≡sW FC3

where
FC1 says: every infinite graph in which every connected
component is finite has a sequence of canonical indices of
different components.
FC3 says: every infinite graph in which every connected
component is finite has an infinite totally disconnect set.
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Motivation

Goal: Explore the relationship between uniform (also called
Weihrauch) reducibility and results in reverse mathematics.

Observation: Some reducibility results and reverse
mathematics results have proofs with significant common
content.

We can reduce duplication in our arguments if we can prove
single results that have both desired consequences as
immediate corollaries.



Formalizing sW reduction
One characterization of sW reduction is to consider problems:

The problem P is a sentence ∀X∃Y p(X ,Y ), where
p(X ,Y ) is a formula of second order arithmetic.

If p(XP ,YP), we say XP is an instance of the problem P
and YP is a solution of XP .

In this setting Q 6sW P means there are computable
functionals ψ and φ such that

ψ

XQ −→ XP
↓ ↓

YQ ←− YP
φ
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Kohlenbach’s axioms

Kohlenbach [3] presents axioms for reverse mathematics in
higher types.

• RCAω
0 consists of Ê-HA

ω

� plus law of the exclude middle
plus QF-AC1,0:

∀X∃y A(X , y) → ∃Y∀X A(X ,Y (X ))

for A quantifier free.

• Ê-HA
ω

� is intuitionistic arithmetic in all finite types.
(See §3.4 of Kohlenbach [4]).

• Ê-HA
ω

� includes combinators allowing λ-abstraction.



Formalizing sW reduction

Since the functionals defining sW reduction are of finite type,
statements about their existence can be formulated in higher
order reverse mathematics.

Because iRCAω
0 admits term extraction, for certain choices of

Q and P, if iRCAω
0 ` Q 6sW P, then Q 6sW P. (See Hirst and

Mummert “Using Ramsey’s Theorem Once” for details.)

By composition of functionals,

RCAω
0 ` Q 6sW P → (P → Q ∧ P̂ → Q̂)

where P̂ is the infinite parallelization of P.

By Proposition 3.1 of Kohlenbach [3]:
If RCAω

0 ` θ then RCA0 ` θ.



A sample problem

Goal: Prove RCAω
0 ` L̂PO 6sW RAN.

L̂PO is ∀〈pn〉 ∃g (g(i) = 1↔ ∃t pi(t) = 0)

So g selects those i such that 0 is in the range of pi .
Infinite parallelization of the limited principle of

omniscience.

RAN is “Every injective function has a range.”

∀f ∃χf ∀y (χf (y) = 1↔ ∃t f (t) = y)



L̂PO 6sW RAN: Construction of φ in RCAω0

Given 〈pn〉 for L̂PO, define an injection f by f ((i , j)) = k if and
only if the following formula (denoted θ(〈pn〉, (i , j), k)) holds:

(k = 2i + 1 ∧ pi(j) = 0 ∧ ∀t < j pi(t) 6= 0)∨
(k = 2(i , j)∧ (pi(j) 6= 0 ∨ ∃t < j pi(t) = 0))

Note that 2i + 1 ∈ RAN(f ) if and only if ∃t pi(t) = 0, so

χRAN(f)(2i + 1) =

{
0 if ∀t pi(t) 6= 0
1 if ∃t pi(t) = 0

which is the solution to the instance 〈pn〉 of L̂PO.

Define φ by φ(χRAN(f)) = χRAN(f)(2i + 1).



L̂PO 6sW RAN: Construction of ψ in RCAω0

Working in RCAω
0 , we need to prove the existence of the

functional ψ mapping 〈pn〉 to f (as defined on the previous
slide).

Our main tool is QF-AC1,0: ∀X∃y A(X , y)→ ∃Y∀X A(X ,Y (X ))

θ(〈pn〉, (i , j), k) is Σ0
0 and ∀(〈pn〉, (i , j))∃k θ(〈pn〉, (i , j), k),

so QF-AC1,0 proves the existence of a functional F such that
θ(〈pn〉, (i , j),F (〈pn〉, (i , j))).

F maps (〈pn〉, (i , j)) to f ((i , j)).

Thus f is λ(i , j).F ((〈pn〉, (i , j)))
and ψ = λ〈pn〉.[λ(i , j).F ((〈pn〉, (i , j)))].



Summarizing the demonstration problem:
We showed RCAω

0 ` L̂PO 6sW RAN. Similar techniques can
be used to prove RCAω

0 ` RAN 6sW L̂PO, so

RCAω
0 ` L̂PO ≡sW RAN.

Consequently,
By Kohlenbach’s conservation result,

RCA0 ` L̂PO↔ RAN and RCA0 `
̂̂
LPO↔ R̂AN

Because RCAω
0 ` P̂ ≡sW

̂̂P,

RCA0 ` ACA0 ↔ L̂PO↔ ̂̂
LPO↔ RAN↔ R̂AN

For appropriate formalizations of RAN and L̂PO, reproving
the reductions in iRCAω

0 yields

L̂PO ≡sW RAN
See Hirst and Mummert’s “Using Ramsey’s Theorem
Once” for details.



Questions

• How unfaithful is this formalization of sW reduction? Find
good examples where P 6sW Q but RCAω

0 6` P 6sW Q. In
particular, what about statements that are equivalent to the
pigeonhole principle or to Σ0

2 induction?

• If RCAω
0 6` P 6sW Q, then we can view the formalization of

P 6sW Q as a “functional existence axiom” which is not
provable in RCAω

0 . What is the logical strength of these
functional existence axioms? How are they related to the
→ operator on Weihrauch problems?

• What about other reducibilities?



A week ago, Schloss Dagstuhl - Leibniz-Zentrum für Informatik
held Dagstuhl Seminar 15392: Measuring the Complexity of
Computational Content: Weihrauch Reducibility and Reverse
Analysis.

Organizers: V. Brattka, A. Kawamura, A. Marcone, A. Pauly

Associated bibliography:
http://cca-net.de/publications/weibib.php

Summaries of talks will eventually appear in Dagstuhl Reports

http://cca-net.de/publications/weibib.php
http://www.dagstuhl.de/dagrep
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