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Motivation

Goal: Explore the relationship between Weihrauch (and other)
reducibilities and results in reverse mathematics.

Observation: Some reducibility results and reverse
mathematics results have proofs with significant common
content.

For example, in [1], Gura, Hirst, and Mummert prove:
RCA0 ` FC1↔ FC3 and FC1 ≡sW FC3

where
FC1 says: every infinite graph in which every connected
component is finite has a sequence of canonical indices of
different components.
FC3 says: every infinite graph in which every connected
component is finite has an infinite totally disconnect set.
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Motivation

Goal: Explore the relationship between Weihrauch (and other)
reducibilities and results in reverse mathematics.

Observation: Some reducibility results and reverse
mathematics results have proofs with significant common
content.

We can reduce duplication in our arguments if we can prove
single results that have both desired consequences as
immediate corollaries.



Formalizing sW reduction
One characterization of sW reduction is to consider problems:

The problem P is a sentence ∀X∃Y p(X ,Y ), where
p(X ,Y ) is a formula of second order arithmetic.

If p(XP ,YP), we say XP is an instance of the problem P
and YP is a solution of XP .

In this setting Q 6sW P means there are computable
functionals ψ and φ such that

ψ

XQ −→ XP
↓ ↓

YQ ←− YP
φ
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Kohlenbach’s axioms

Kohlenbach [3] presents axioms for reverse mathematics in
higher types.

• RCAω
0 consists of Ê-HA

ω

� plus law of the exclude middle
plus QF-AC1,0:

∀X∃y A(X , y) → ∃Y∀X A(X ,Y (X ))

for A quantifier free.

• Ê-HA
ω

� is intuitionistic arithmetic in all finite types.
(See §3.4 of Kohlenbach [4]).

• Ê-HA
ω

� includes combinators allowing λ-abstraction.



Formalizing sW reduction
Since the functionals defining sW reduction are of finite type,
statements about their existence can be formulated in higher
order reverse mathematics.

Since iRCAω
0 admits term extraction, for many formulas if

iRCAω
0 ` Q 6sW P, then Q 6sW P. (Using the intuitionistic

system is necessary here. Corrected after the talk; for details
see “Using Ramsey’s Theorem Once” by Hirst and Mummert.)

By composition of functionals,

RCAω
0 ` Q 6sW P → (P → Q ∧ P̂ → Q̂)

where P̂ is the infinite parallelization of P.

By Proposition 3.1 of Kohlenbach [3]:
If RCAω

0 ` θ then RCA0 ` θ.



A sample problem

Goal: Prove RCAω
0 ` L̂PO ≡sW RAN.

L̂PO is ∀〈pn〉 ∃g (g(i) = 1↔ ∃t pi(t) = 0)

So g selects those i such that 0 is in the range of pi .
Infinite parallelization of the limited principle of

omniscience.

RAN is “Every injective function has a range.”

∀f ∃χf ∀y (χf (y) = 1↔ ∃t f (t) = y)



L̂PO 6sW RAN: Construction of φ in RCAω0

Given 〈pn〉 for L̂PO, define an injection f by f ((i , j)) = k if and
only if the following formula (denoted θ(〈pn〉, (i , j), k)) holds:

(k = 2i + 1 ∧ pi(j) = 0 ∧ ∀t < j pi(t) 6= 0)∨
(k = 2(i , j)∧ (pi(j) 6= 0 ∨ ∃t < j pi(t) = 0))

Note that 2i + 1 ∈ RAN(f ) if and only if ∃t pi(t) = 0, so

χRAN(f)(2i + 1) =

{
0 if ∀t pi(t) 6= 0
1 if ∃t pi(t) = 0

which is the solution to the instance 〈pn〉 of L̂PO.

Define φ by φ(χRAN(f)) = χRAN(f)(2i + 1).



L̂PO 6sW RAN: Construction of ψ in RCAω0

Working in RCAω
0 , we need to prove the existence of the

functional ψ mapping 〈pn〉 to f (as defined on the previous
slide).

Our main tool is QF-AC1,0: ∀X∃y A(X , y)→ ∃Y∀X A(X ,Y (X ))

θ(〈pn〉, (i , j), k) is Σ0
0 and ∀(〈pn〉, (i , j))∃k θ(〈pn〉, (i , j), k),

so QF-AC1,0 proves the existence of a functional F such that
θ(〈pn〉, (i , j),F (〈pn〉, (i , j))).

F maps (〈pn〉, (i , j)) to f ((i , j)).

Thus f is λ(i , j).F ((〈pn〉, (i , j)))
and ψ = λ〈pn〉.[λ(i , j).F ((〈pn〉, (i , j)))].



RAN 6sW L̂PO: Construction of φ in RCAω0

Given an injection f , define an instance 〈pn〉 of L̂PO by:

pn(t) =

{
0 if f (t) = n
1 if f (t) 6= n

Note that n ∈ RAN(f ) if and only if ∃t pn(t) = 0.

So the solution of 〈pn〉 is χRAN(f) and φ is the identity functional.



RAN 6sW L̂PO: Construction of ψ in RCAω0

Working in RCAω
0 , we need to prove the existence of a

functional ψ mapping f to 〈pn〉 (as defined on the previous
page).

∀(f ,n, t)∃k ((k = 0 ∧ f (t) = n)∨ (k = 1 ∧ f (t) 6= n))

so QF-AC1,0 proves the existence of S such that S maps
(f ,n, t) to pn(t).

pn = λt .S((f ,n, t)) and 〈pn〉 = λn.[λt .S((f ,n, t))], so

ψ = λf .(λn.[λt .S((f ,n, t))])



Summarizing the demonstration problem:

We showed RCAω
0 ` L̂PO ≡sW RAN

Consequently,
By Kohlenbach’s conservation result,

RCA0 ` L̂PO↔ RAN and RCA0 `
̂̂
LPO↔ R̂AN

Because RCAω
0 ` P̂ ≡sW

̂̂P,

RCA0 ` ACA0 ↔ L̂PO↔ ̂̂
LPO↔ RAN↔ R̂AN

If we reprove an appropriate formalization of the reduction
in iRCAω

0 , we can conclude

L̂PO ≡sW RAN
(See Hirst and Mummert “Using Ramsey’s theorem once”
for more detail.)



Questions

• How unfaithful is this formalization of sW reduction? Find
good examples where P 6sW Q but RCAω

0 6` P 6sW Q.

• If RCAω
0 6` P 6sW Q, then we can view the formalization of

P 6sW Q as a “functional existence axiom” which is not
provable in RCAω

0 . What is the logical strength of these
functional existence axioms? Are there large natural
classes that are provably equivalent in RCAω

0 ? What is the
analog of the big five?

• What about other reducibilities?
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