Reverse Mathematics of Matroids

Jeff Hirst Appalachian State University Boone, North Carolina, USA

Joint work with Carl Mummert, Marshall University

May 25, 2016

Association for Symbolic Logic 2016 North American Annual Meeting

Motivation

We are interested in decomposing graphs into their connected components. It is helpful to find an "antichain" of vertices.

Motivation

We are interested in decomposing graphs into their connected components. It is helpful to find an "antichain" of vertices.

Observation: The antichain vertices are like a basis.

Matroids

Matroids were defined by Hassler Whitney in *On the abstract properties of linear dependence* (Amer. J. Math. 1935)

Our purposes are best served by the notion of an *enumerated matroid*, or e-matroid.

Matroids

Matroids were defined by Hassler Whitney in *On the abstract properties of linear dependence* (Amer. J. Math. 1935)

Our purposes are best served by the notion of an *enumerated matroid*, or e-matroid.

Defn: (RCA₀) An e-matroid is a pair (*M*, *e*) consisting of a set *M* and a function $e : \mathbb{N} \to M^{<\mathbb{N}}$ that lists all the finite dependent sets. That is,

- For all $n, e(n) \neq \emptyset$.
- If e(n) = X and Y is a finite superset of X, then $\exists m(e(m) = Y)$.
- (Exchange property) If ∀m(e(m) ≠ X ∧ e(m) ≠ Y), and X is smaller than Y, then for some y ∈ Y, ∀n(e(n) ≠ X ∪ {y}).

Examples of e-matroids

Thm: (RCA₀) Let *G* be a graph with vertex set *V* and at least one edge. Then there is a function *e* that enumerates every finite subset of *V* that contain a path connected pair of vertices. (V, e) is an e-matroid.

Thm: (RCA₀) Let *V* be a countable vector space. Then there is a function *e* that enumerates every finite subset of *V* that is linearly dependent. (*V*, *e*) is an e-matroid.

Examples of e-matroids

Thm: (RCA₀) Let *G* be a graph with vertex set *V* and at least one edge. Then there is a function *e* that enumerates every finite subset of *V* that contain a path connected pair of vertices. (V, e) is an e-matroid.

Thm: (RCA₀) Let *V* be a countable vector space. Then there is a function *e* that enumerates every finite subset of *V* that is linearly dependent. (*V*, *e*) is an e-matroid.

There are many ways to formulate countable vector spaces in second order arithmetic. For example, the formulation in Simpson's book consists of a countable Abelian group of vectors together with scalar multiplication over a countable field.

Notions from linear algebra

Many concepts from linear algebra have natural analogs for matroids.

- *B* spans (*M*, *e*) if adjoining any additional element to *B* results in a dependent set.
- If *B* is independent and spans (*M*, *e*) then *B* is a *basis*.
- If every subset of size *n* is dependent, we say (*M*, *e*) has rank no more than *n*.

Matroids and graphs

Thm: (RCA₀) The following are equivalent:

- 1. For every *n*, every e-matroid of rank no more than *n* has a basis.
- 2. For every *n*, if *G* is a countable graph and every collection of *n* vertices contains at least one path connected pair, then *G* can be decomposed into its connected components. (Equivalently, *G* has a maximal antichain of pairwise disconnected vertices.)

Matroids and graphs

Thm: (RCA₀) The following are equivalent:

- 1. For every *n*, every e-matroid of rank no more than *n* has a basis.
- 2. For every *n*, if *G* is a countable graph and every collection of *n* vertices contains at least one path connected pair, then *G* can be decomposed into its connected components. (Equivalently, *G* has a maximal antichain of pairwise disconnected vertices.)
- 3. The induction scheme for Σ_2^0 formulas.

What happens if the rank is not bounded?

A not unexpected result

Thm: (RCA₀) The following are equivalent:

- $1. \ ACA_0.$
- 2. Every e-matroid has a basis.
- 3. Every countable graph has a maximal antichain of pairwise disconnected vertices.

A not unexpected result

Thm: (RCA₀) The following are equivalent:

- 1. ACA₀.
- 2. Every e-matroid has a basis.
- 3. Every countable graph has a maximal antichain of pairwise disconnected vertices.
- 4. Every vector space has a basis. (Friedman, Simpson, Smith)

There is a substantial early literature on recursion theory of matroids and vector spaces by authors including Crossley, Downey, Metakides, Nerode, Remmel, and many others.

sW reduction

Strong Weihrauch (or uniform) reduction can be described in terms of *problems*:

The problem *P* is a sentence $\forall X \exists Y \ p(X, Y)$, where p(X, Y) is a formula of second order arithmetic.

If $p(X_P, Y_P)$, we say X_P is an instance of the problem P and Y_P is a solution of X_P .

In this setting $Q \leq_{sW} P$ means there are computable functionals ψ and ϕ such that

$$\begin{array}{cccc} & \psi \\ X_Q & \longrightarrow & X_P \\ \downarrow & & \downarrow \\ Y_Q & \longleftarrow & Y_P \\ & \varphi \end{array}$$

Uniform reduction: unbounded dimension

Thm: $\mathsf{EMB} \equiv_{sW} \mathsf{GAC} \equiv_{sW} \mathsf{VSB} \equiv_{sW} \widehat{\mathsf{C}}_{\mathbb{N}}$

Problem	Input	Output	
EMB	e-matroid	basis	
GAC	graph	antichain	
VSB	vector space	hasis	

 $\widehat{C}_{\mathbb{N}}$ – the parallelization of choice for \mathbb{N} Input: A sequence of nonsurjective functions from \mathbb{N} to \mathbb{N} Output: A sequence y_0, y_1, \ldots

such that y_n is not in the range of f_n

Uniform reduction: fixed dimension

Thm: For each $n \ge 2$, EMB_n \equiv_{sW} GAC_n \equiv_{sW} VSB_n \equiv_{sW} C_N

Problem	Input	Output
EMB _n	n dimensional e-matroid	basis
GAC _n	graph with <i>n</i> components	antichain
VSB _n	n dimensional vector space	basis
$C_{\mathbb{N}}$	nonsurjective function	non-range number

Uniform reduction: bounded dimension

Thm:
$$\mathsf{EMB}_{<\omega} \equiv_{sW} \mathsf{GAC}_{<\omega} \equiv_{sW} \mathsf{VSB}_{<\omega} \equiv_{sW} \mathsf{C}_{\mathsf{max}}^{\subset}$$

Problem	Input	Output		
$EMB_{<\omega}$	<i>n</i> and an e-matroid of dimension $\leq n$	basis		
$\text{GAC}_{<\omega}$	<i>n</i> and a graph with $\leq n$ components	antichain		
$VSB_{<\omega}$	<i>n</i> and a vector space of dimension $\leq n$	basis		
C_{\max}^{\subset} – Choosing a maximal subset Input: A number <i>n</i> and a nonsurjective function $f : \mathbb{N} \to \mathbb{N}^{<\mathbb{N}}$ whose range includes all sets of size $\geq n$. Output: A maximal set not in the range of <i>f</i> .				

Back to reverse mathematics

Formalizing aspects of the proof of the previous result yields:

Thm: (RCA₀) The following are equivalent:

- 1. The induction scheme for Σ_2^0 formulas.
- 2. Let *V* be a vector space such that for some *n*, every subset of *n* vectors is linearly dependent. Then *V* has a basis.
- 3. C_{max}^{\subset}

Some references

- Kirill Gura, Jeffry L. Hirst, and Carl Mummert, On the existence of a connected component of a graph, Computability 4 (2015), 103–117.
 DOI 10.3233/COM-150039.
 Draft at: http://mathsci2.appstate.edu/~jlh/bib/pdf/hmg-graph-final.pdf.
- [2] Jeffry L. Hirst and Carl Mummert, *Reverse mathematics of matroids*. Submitted. Draft at: http://mathsci2.appstate.edu/~jlh/bib/pdf/matroid1.pdf.
- [3] A. Nerode and J. Remmel, *Recursion theory on matroids*, Patras Logic Symposion (Patras, 1980), Stud. Logic Found. Math., vol. 109, North-Holland, Amsterdam, 1982, pp. 41–65. DOI 10.1016/S0049-237X(08)71356-9.
- [4] Stephen G. Simpson, Subsystems of second order arithmetic, 2nd ed., Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, NY, 2009.
 DOI 10.1017/CBO9780511581007.
- [5] Hassler Whitney, On the Abstract Properties of Linear Dependence, Amer. J. Math. **57** (1935), no. 3, 509–533.
 DOI 10.2307/2371182.