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Overview:

• Hindman’s theorem

• Reverse mathematics / computability

• Ultrafilter version of Hindman’s
theorem

• A computable restriction of Hindman’s
theorem

• Stone representation theorem

• Glazer’s proof of Hindman’s theorem



FS(X) := all sums of finite subsets of X

Example: Suppose X = {1, 2, 5}.
Then FS(X) = {1, 2, 3, 5, 6, 7, 8}

No repeating!

Theorem 1 (Hindman’s Theorem [?]).
Given G ⊆ N, there is an infinite set X ⊆ N
such that FS(X) ⊆ G or FS(X) ⊆ Gc.



Example: Suppose G is the set of natu-
ral numbers that have an even number of
factors of 2 in their prime factorization.

0 1 2 3 4 5 6 7 8 16
G G G G G G G

Candidates for X:

1. G doesn’t work, because 3 + 5 = 8.

2. Gc doesn’t work, because
2 + 6 + 8 = 16.

3. X = {21, 23, 25, 27, . . . } works! Every
nonrepeating finite sum is in Gc.

Sometimes it’s hard to find X.



Reverse mathematics can measure the proof-
theoretic and computability-theoretic strength
of theorems.

Subsystems of second order arithmetic:

RCA0: (recursive comprehension)

· ordered semi-ring axioms

· induction for Σ0
1 formulas

· existence axioms for relatively
computable sets

· model: ω and the computable sets

ACA0: (arithmetical comprehension)

· RCA0 plus existence axioms for sets
defined by formulas containing num-
ber quantifiers (no set quantifiers)

· model: ω and the arithmetically de-
finable sets



Examples of Reverse Mathematics

Theorem 2. (D. Brown [?]) RCA0 proves
that the following are equivalent:

1. ACA0.

2. Suppose F is a closed subset of Can-
tor space. Then there is a countable
subset C of F such that each element
of F is a limit of elements of C.

Theorem 3. (Blass, Hirst, Simpson [?]) ACA+
0

proves Hindman’s theorem.

Theorem 4. (Blass, Hirst, Simpson [?]) Hind-
man’s theorem proves ACA0.



Ultrafilters

An ultrafilter on the power set of N satisfies:

1. ∅ /∈ U

2. if X1, X2 ∈ U then X1 ∩X2 ∈ U
(closed under intersections)

3. ∀X ∈ U ∀Y ∈ F (X ⊆ Y → Y ∈ U)
(closed under supersets)

4. ∀X ∈ F (X ∈ U ∨Xc ∈ U)

Example: [2] = {X ⊆ N | 2 ∈ X} is called
the principal ultrafilter generated by 2.

Nonexample: Cof= {X ⊆ N | Xc is finite}
is a filter, but not an ultrafilter. We could
use Zorn’s lemma to extend it to a
nonprincipal ultrafilter.



Downward Translations

For X ⊆ N and m ∈ N, let

X −m = {y ∈ N | y +m ∈ X}

n 0 1 2 3 4 5 6 7 8
n ∈ X 0 1 1 0 0 0 1 1 1

n ∈ X − 2 1 0 0 0 1 1 1 ? ?

An ultrafilter U is
almost downward translation invariant if

∀X ∈ U ∃x ∈ X (x 6= 0 ∧X − x ∈ U)

Theorem 5. (Hindman [?]) Assuming CH,
Hindman’s theorem holds if and only if there
is an almost downward translation invari-
ant ultrafilter on the subsets of N.



Reformulation in countable setting

A countable field of sets (Boolean algebra
of sets) is a collection of subsets of N which
is closed under intersection, (finite) union,
and complement.

Note: Any ultrafilter on a countable field of
sets is a countable set.

A downward translation algebra is a field of
sets that is closed under downward
translations.

Examples:

1. {N, ∅} is a downward translation
algebra.

2. The computable sets form a countable
downward translation algebra.



For any set G, let 〈G〉 denote the downward
translation algebra generated by G.

Example: 〈evens〉 = {evens, odds,N, ∅}

Typical elements of 〈G〉 can be written in
the form:

(G−m1,1∩G−m1,2∩· · ·∩Gc−m1,j1)∪ . . .

· · ·∪(G−mk,1∩G−mk,2∩· · ·∩Gc−mk,jk)

RCA0 can prove that 〈G〉 exists.



P-theorem 6. (RCA0) Fix G ⊆ N . If there
is an almost downward translation invari-
ant ultrafilter on the downward translation
algebra 〈G〉, then Hindman’s Theorem holds
for G.



Sketch: Suppose U is an a.d.t.i.u.f. on 〈G〉.
Consider the case when G ∈ U .

Let X0 = G.
Pick x0 ∈ X0 such that X0 − x0 ∈ U .

Let X1 = X0 ∩X0 − x0. Note X1 ∈ U .
Pick x1 ∈ X1 such that

x0 < x1 and X1 − x1 ∈ U .

Let X2 = X1 ∩X1 − x1.
Pick x2 ∈ X2 such that . . .

G = X0 ⊇ X1 ⊇ X2 ⊇ . . . , so
{x0, x1, x2, . . . } ⊆ G.

x1 ∈ X1 ⊆ X0 − x0, so x0 + x1 ∈ X0 = G.

Similarly, x1 + x2 ∈ X1 ⊆ G.

Also, x1 + x2 ∈ X1 ⊆ X0 − x0, so
x0 + x1 + x2 ∈ X0 = G.

x2 ∈ X1 ⊆ X0 − x0, so x0 + x2 ∈ X0 = G.



P-theorem 7. (RCA0) If 〈G〉 contains no
singletons, then Hindman’s Theorem holds
for G.

Sketch:
Suppose 〈G〉 contains no singletons.

Principal ultrafilters on 〈G〉 are peculiar.

Consider U = {X ∈ 〈G〉 | 0 ∈ X}.
Let X ∈ U . Pick an x ∈ X such that x 6= 0.

Then 0 ∈ X − x, so X − x ∈ U .

So U is an a.d.t.i.u.f. on 〈G〉.
By Theorem 6, Hindman’s theorem holds
for G.



An extension:

P-theorem 8. (RCA0+Σ0
2 induction) If 〈G〉

doesn’t contain all the singletons, then Hind-
man’s Theorem holds for G.

Consequences:

Corollary 9. If G is computable and 〈G〉
doesn’t contain all the singletons, then there
is a computable set X satisfying Hindman’s
theorem for G.

Corollary 10. Let G be a computable set
such that 0′ is computable from every X
satisfying Hindman’s theorem for G. Then
〈G〉 contains all the singletons.



Observation: Sometimes it’s good to look
at all the ultrafilters of a Boolean algebra.

Thm 11 (Stone Representation Thm).
Every Boolean algebra is isomorphic to a
field of sets.

Idea: Given a Boolean algebra (described
algebraically) assign a set to each element.

How are ultrafilters used in assigning sets?

How can the proof be adapted to reverse
mathematics?



Stone’s Theorem for a particular
finite boolean algebra

The algebra:

Elements: ∅, 1, a1, a2, a3, a4, a5, a6

Secret Key:
Operation fragments:

∩ ∅ 1 a1 a2 . . .
∅ ∅ ∅ ∅ ∅. . .
1 ∅ 1 a1 a2 . . .
a1 ∅ a1 a1 a4 . . .
...

...
...

...
. . .

∪ ∅ 1 a1 a2 . . .
∅ ∅ 1 a1 a2 . . .
1 1 1 1 1 . . .
a1 a1 1 a1 1 . . .
...

...
...

...
. . .

a ∅ 1 a1 a2 . . .
ac 1 ∅ a6 a5 . . .

∅ ∅
1 {1, 2, 3}
a1 {1, 2}
a2 {1, 3}
a3 {2, 3}
a4 {1}
a5 {2}
a6 {3}



The ultrafilters on the algebra:

u1 u2 u3

∅ 0 0 0
1 1 1 1
a1 1 1 0
a2 1 0 1
a3 0 1 1
a4 1 0 0
a5 0 1 0
a6 0 0 1

The isomorphism:

∅ ∅
1 {u1, u2, u3}
a1 {u1, u2}
a2 {u1, u3}
a3 {u2, u3}
a4 {u1}
a5 {u2}
a6 {u3}
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If the algebra is infinite, then there may
be uncountably many ultrafilters. It’s more
convenient to think of a tree.

The set of ultrafilters assigned to 1 (for
example) may be may be uncountable.



P-theorem 12. (ACA0) Every countable
Boolean algebra is isomorphic to a field of
sets.

Ideas from proof:

· The ultrafilters on the algebra form a
closed subset of Cantor space; call it
F .

· By Brown’s theorem, ACA0 proves the
existence of a countable subset C ⊆ F
such that each element of F is a limit
of elements of C.

· The sets Xa = {u ∈ C | a ∈ u} form a
field of sets isomorphic to the original
algebra.

Corollary 13. Every arithmetical countable
boolean algebra is arithmetically isomorphic
to an arithmetical field of sets.



Glazer’s proof of Hindman’s theorem uses
the space of ultrafilters on the power set of
N. (See page 449 of [?] or page 148 of [?].)

Outline of Glazer’s proof:

· Define addition on ultrafilters.

· Prove that addition is associative and
right continuous.

· Use compactness of the ultrafilter space
to prove the existence of an idempo-
tent ultrafilter (u+ u = u).

· Show that idempotent ultrafilters are
almost downward translation invari-
ant.



Glazer’s addition:

X ∈ u+ v if and only if
∃Y ∈ v ∀y ∈ Y (X − y ∈ u)

Example:

X ∈ [2] + [3]



Can Glazer’s proof be executed in ACA0?

Pitfalls and responses:

Ultrafilters on the power set of N are un-
countable.

Use ultrafilters on a countable
downward translation algebra.

The space of ultrafilters is uncountable.

It’s a countably encodable subset of
Cantor space.

The proof of the existence of idempotents
uses Zorn’s lemma.

Zorn’s lemma can be avoided in a com-
plete separable metric space.

The proof of right continuity the fact that
every subset of N is in the ultrafilter.

Uh-oh.



Adaptability

The general connection between ultrafilters
and Ramsey theory:

Thm 14. ( Hindman, page 148 of [?] )

Let G be a family of nonempty subsets of
X. The following are equivalent:

1. If X is finitely colored there exists a
monochromatic G ∈ G.

2. There exists an ultrafilterA onX such
that, for all A ∈ A, A ⊇ G for some
G ∈ G.

The ultrafilter versions of Ramsey-style the-
orems can have interesting computability
theoretic and reverse mathematical analogs.
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