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Reverse mathematics: The method

Reverse Mathematics measures the strength of theorems by
proving equivalence results over. . .

The base theory RCA,



Reverse mathematics: The method

Reverse Mathematics measures the strength of theorems by
proving equivalence results over. ..

The base theory RCAy:
Variables for natural numbers and sets of natural numbers
Axioms

Arithmetic axioms
(e.g.n+0=nand n+ (M) = (n+ m)’)

Induction for particularly simple formulas

Recursive comprehension:
If you can compute a set, then it exists.



A theorem of RCA,

Thm: (RCAg) Forany X € N,theset Y ={n+ 1| n e X} exists.

An example:
n|0 1 2 3 4 5 6
xx|1 00 1 1 0 O
xy/0 1.0 0 1 10




A theorem of RCA,

Thm: (RCAg) Forany X € N,theset Y ={n+ 1| n e X} exists.

An example:
n|0 1 2 3 4 5 6
xx|1 0 0 1 1 0 O
xy/0 1.0 0 1 10

A proof sketch: Given x, define

{0 ifn=0
U Z s n=1) ifn+o0.



An equivalence theorem!

Thm: (RCAq) The following are equivalent:
(1) WKLy: Every infinite 0-1 tree has an infinite path.

(2) If every finite subgraph of G can be 2-colored, then G can
be 2-colored.

Proof sketch:

(1)—(2) Given a graph, build a tree such that every path
computes a coloring.

(2)—(1) Given a tree, build a graph such that every 2-coloring
computes a path.
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By the way: More things equivalent to WKL,

Thm: (RCAq) The following are equivalent:

1.
2.

WKL,

If every finite subgraph of G is 2-colorable, then G is
2-colorable. [4]

Every continuous function on [0, 1] is bounded. [9]

Every continuous function on [0, 1] is Riemann integrable.
[91(7]

Every open cover of [0, 1] has a finite subcover. [2]

Every countable commutative ring has a prime ideal. [3]

Many theorems of mathematics are either provable in RCAq or
equivalent to one of: WKLo, ACAq, ATRy, and TT1-CAq



An alternative approach: Weihrauch reductions

We consider problems of the form P : Vx(pq(x) — Jy p2(X, y))
p1(x) means x is an instance of the problem P

P2(X, y) means y is a solution of the instance x of the
problem P.

In this setting Q <, P means there are computable functionals

U and ¢ such that
P
Xg — Xp
\ \
Yo < JYp
%
Note: ¢ can use information about xg to compute yq. (This is
weak reduction.)



Weihrauch reductions: A concrete example

Consider the problems:
Problem P: Every infinite 0-1 tree has a path.
Problem Q: Every locally 2-colorable graph has a
2-coloring.

Our previous argument actually shows Q <y P:

Xg — Xp
S S
Ya < Jp
¢

where
P turns graphs into trees, and ¢ turns paths into colorings.
We also showed P <,y Q,so P =y Q.



Weihrauch reduction: Extra milage

In the Weihrauch literature, P is used to denote the
parallelization of P. A problem for P consists of an infinite
sequence of instances of P, and a solution for P consists of the
associated infinite sequence of solutions. Because of the
uniformity of Weihrauch reductions, we have the following
general result.

Thm: If P <,y Qthen P <y Q.

Consequently, if
P: Every infinite 0-1 tree has a path.
Q: Every locally 2-colorable graph has a 2-coloring.

then P =w Q.



Toward formalizing Weihrauch reductions

We would like to get proof theoretic results from Weihrauch
reductions. The functionals ¢ and 1 are not objects of second
order arithmetic. However, an analog of RCA, exists for higher
order objects.

An axiom system formulated by Kohlenbach [6]

RCAy’ includes:
E/I-ﬁf’ Formal arithmetic in all finite types with
restricted induction and primitive recursion
The law of the excluded middle (A —A)

QF-AC'? A choice scheme that implies the recursive
comprehension axiom (RCA)



Formalizing Weihrauch reductions
Given problems:
P:Vx(p1(x) — 3y pa2(x, ¥)) and Q: V(g1 (x) — 3y q2(x, y))

in the language of RCAy’, we use Q <y P to abbreviate

JoeIpVu (g1 (u) — (p1(e (W) AVYIp2(@(u), y) — qe(u, b(u, ¥))]))

Which says that there are functionals ¢ and 1 such that
gi(u) If uis aninstance of Q
p1(@(u)) then @(u) is an instance of P

p2(@(u), y) such that whenever y is a solution the instance
©(u) of the problem P

Q2(u,b(u,y)) ¥(u, y) computes a solution to the instance u of
the problem Q

For many problems, if iIRCAg’ proves that such a ¢ and 1 exist,
then analogous computable functionals exist. (The converse is
not true and the use of the intuitionistic system matters.)



Formalized reductions
Useful features of formalized Weihrauch reductions:

Thm: If P and Q are nice and /RCAy + P <y Q, then
P<w Q.
For more about /RCAy’ and nice see Hirst and Mummert’s
“Using Ramsey’s Theorem Once.”

Thm: I RCAY F P < Q, then RCAo - Q — P.

Thm: RCAL F P <y Q= P <y Q.



Formalized reductions
Useful features of formalized Weihrauch reductions:

Thm: If P and Q are nice and /RCAy + P <y Q, then
P<w Q.
For more about /RCAy’ and nice see Hirst and Mummert’s
“Using Ramsey’s Theorem Once.”

Thm: I RCAY F P < Q, then RCAo - Q — P.

Thm: RCAY P <y Q - P <y Q.
If we write

WKL, for “every infinite 0-1 tree has an infinite path”

G for “every locally 2-colorable graph has a 2-coloring”

then

RCAy + WKLO =w G

RCAY WKLO =w G

RCAO + WKLO — G



More reverse math consequences

We know that: RCAg - VW(TO &G

It is also known that: RCAq - WKLy < WKL

Thm: (RCAq) The following are equivalent:
1. WKLy

2. WKL,
3. G: Every locally 2-colorable graph is 2-colorable.

4. G: Every infinite sequence of locally 2-colorable graphs
has a corresponding infinite sequence of 2-colorings.

Note: RCAy’ proves that G =y WKLy = G=w VTKTO.



Parallelization can affect strength

For the 2-coloring problem G, G =y G and RCAy - G+ G.

Not all combinatorial theorems behave like G when parallelized.
For example. ..

Ramsey’s Theorem for pairs and two colors RT(2, 2) says:

If the edges of an infinite complete graph are 2-colored, then
there is an infinite subset of the vertices such that the
corresponding complete subgraph is monochromatic.

—

RCAg F RT(2,2) <+ ACAy, but by Seetapun and Slaman’s
theorem [8], RCAq I RT(2,2) — ACAy.



Parallelization can affect strength

For Weihrauch reducibility, just two applications of Ramsey’s
theorem cannot be reduced to a single use,

(RT(2,2),RT(2,2)) £w RT(2,2)

This is a consequence of the Squashing Theorem of Dzhafarov
et al [1], which shows that if true,

(RT(2,2),RT(2,2)) <w RT(2,2)

would imply

RT(2,2) <w RT(2,2)
contradicting a theorem of Jockusch [5]
Of course, RCAq - RT(2,2) — (RT(2,2),RT(2,2)), so the

connection between provability and Weihrauch reducibility is
not simple. (Advertisement for the Logic Colloquium.)



A word on the Squashing theorem:

An idea from the proof of the:

Squashing Theorem: (P, P) <y P implies P <y P
(provided P is nice)

Compress the sequence f0, f1, ... into a single instance hO0.
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A word on the Squashing theorem:

An idea from the proof of the:

Squashing Theorem: (P, P) <y P implies P <y P
(provided P is nice)

Compress the sequence f0, f1, ... into a single instance hO0.
fO ¢ @ o o o o
fl @ © o o o o
ho h1 ho f2 o o o o o o
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A word on the Squashing theorem:

An idea from the proof of the:
Squashing Theorem: (P, P) <y P implies P <y P
(provided P is nice)

Assume the initial outputs of h1 are 0.
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A word on the Squashing theorem:

An idea from the proof of the:

Squashing Theorem: (P, P) <y P implies P <y P
(provided tails of solutions of P are solutions)

Assume the initial outputs of h2 are 0.
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