Reverse Mathematics and Gödel's Dialectica Interpretation

Jeffry L. Hirst Appalachian State University

> JMM in San Diego January 8, 2008

These slides are available at: www.mathsci.appstate.edu/~jlh

Gödel's Main Dialectica Result

Thm 1. If $\widehat{\mathsf{HA}}^{\omega}$ proves a formula θ , then RCA_0^{ω} proves the related $\exists \forall$ formula θ^D .

- \widehat{HA}^{ω} is an axiom system for constructive analysis, with: intuitionistic predicate calculus (no law of the excluded middle), restricted induction, and axioms pertaining to objects of higher types.
- RCA_0^{ω} is an axiom system for computable analysis, with: classical logic, restricted induction and set comprehension, and axioms extending RCA_0 to objects of higher types.

Note: RCA_0^ω is E - $\mathsf{PRA}^\omega + \mathsf{QF} - \mathsf{AC}^{1,0}$.

Abbreviated definition of the *Dialectica* translation (1) If φ is quantifier-free then $\varphi^D = \varphi_D = \varphi$.

If $\varphi^D = \exists x \forall y \varphi_D$ and $\psi^D = \exists u \forall v \psi_D$, translate more complicated formulas as follows:

$$(2) (\varphi \land \psi)^{D} = \exists x \exists u \forall y \forall v (\varphi_{D} \land \psi_{D}).$$

$$(3) (\varphi \lor \psi)^{D} = \exists z \exists x \exists u \forall y \forall v ((z = 0 \land \varphi_{D}) \lor (z = 1 \land \psi_{D})).$$

$$(4) (\forall z \varphi(z))^{D} = \exists X \forall z \forall y \varphi_{D}(X(z), y, z).$$

$$(5) (\exists z \varphi(z))^{D} = \exists z \exists x \forall y \varphi_{D}(x, y, z).$$

$$(6) (\varphi \rightarrow \psi)^{D} = \exists U \exists Y \forall x \forall v (\varphi_{D}(x, Y(x, v)) \rightarrow \psi_{D}(U(x), v)).$$

The negation $\neg \varphi$ is treated as an abbreviation of $\varphi \rightarrow \bot$.

An example
Suppose
$$\theta = \neg \forall y \exists x \forall z \neg (f(z) = y \land f(x) \neq y)$$

 $\theta^D = (\neg \forall y \exists x \forall z \neg (f(z) = y \land f(x) \neq y))^D$
 $= (\neg \exists x^1 \forall y \forall z \neg (f(z) = y \land f(x(y)) \neq y))^D$
 $= (\exists x^1 \forall y \forall z \neg (f(z) = y \land f(x(y)) \neq y) \rightarrow \bot)^D$
 $= (\forall x^1 \exists y \exists z \neg \neg (f(z) = y \land f(x(y)) \neq y))^D$
 $= \exists y^{1 \rightarrow 0} \exists z^{1 \rightarrow 0} \forall x^1 \neg \neg (f(z(x)) = y(x) \land f(x(y(x)) \neq y(x)))^T$

Comment on type notation: 0 is the type of a natural number. $0 \rightarrow 0$ is the type of a function from natural numbers to natural numbers, and is often abbreviated by 1. $1 \rightarrow 0$ is the type of a functional that maps functions to numbers.

The connection between φ and φ^D

In a strong enough system, φ and φ^D are provably equivalent. (For example, $\widehat{\mathsf{HA}}^{\#}$, which consists of $\widehat{\mathsf{HA}}^{\omega}$ plus a strong choice scheme and some classical additions proves $\varphi \leftrightarrow \varphi^D$.)

The need for comprehension in one direction is clear.

Thm 2 (RCA_0^ω). The scheme $\varphi \to \varphi^D$ implies ACA_0 . Proof. For any function f, RCA_0^ω proves the formula (φ)

$$\forall y \exists x \forall z (f(z) = y \to f(x) = y).$$

 φ^D is $\exists X^1 \forall y \forall z (f(z) = y \to f(X(y)) = y)$. If φ^D holds, then $\mathsf{Range}(f) = \{y \mid f(X(y)) = y\}$ exists. \Box

The less obvious direction

Thm 3 (RCA_0^ω). The scheme $\varphi^D \to \varphi$ implies ACA_0 .

Outline of proof: Recall our first example of the Dialectica translation: Given $\theta = \neg \forall y \exists x \forall z \neg (f(z) = y \land f(x) \neq y)$, (which is equivalent to $\neg \forall y \exists x \forall z (f(z) = y \rightarrow f(x) = y))$, we have

$$\begin{split} \theta^D &= \exists y^{1 \to 0} \exists z^{1 \to 0} \forall x^1 \neg \neg (f(z(x)) = y(x) \land f(x(y(x))) \neq y(x)). \\ \text{Since } \mathsf{RCA}_0^{\omega} \text{ proves } \neg \theta, \text{ the scheme } \varphi^D \to \varphi \text{ implies } \neg (\theta^D). \\ \text{To finish the proof, use } \neg (\theta^D) \text{ to prove } \mathsf{Range}(f) \text{ exists.} \end{split}$$

Proof of Thm 3. continued

Suppose (for a contradiction) that for every function x of type 1, we can find a pair of integers (y, z) such that $(f(z) = y \land f(x(y)) \neq y)$. Apply $\mathsf{QF} - \mathsf{AC}^{1,0}$ to find the function that picks the least pair, and then combine this with coordinate projections to get functions y and z of type $1 \rightarrow 0$ such that

$$\forall x^1(f(z(x)) = y(x) \land f(x(y(x))) \neq y(x)).$$

From this we can deduce θ^D , contradicting our assumption of $\neg(\theta^D)$.

Thus there is a function x of type 1 such that for every pair of integers y and z, we have $f(z) = y \rightarrow f(x(y)) = y$.

 $\mathsf{Range}(f) = \{ y \mid f(x(y)) = y \}.$

Comparing Dialectica with Skolem Normal Form

If we write φ^P for the prenex form of φ , then $(\varphi^P)^D$ is the Skolem normal form of φ .

It's not hard to show that RCA_0^{ω} proves $(\varphi^P)^D \to \varphi$. Combined with the previous theorem, this yields:

Thm 4 (RCA^{ω}). The scheme $\varphi^D \rightarrow (\varphi^P)^D$ implies ACA₀.

Conclusion: We can't uniformly computably convert the terms realizing the existential quantifiers in *Dialectica* translations into standard Skolem functions.

Skolem \rightarrow *Dialectica?*

Thm 5 (RCA^{ω}). The scheme $(\varphi^P)^D \rightarrow \varphi^D$ implies WKL₀.

Idea of the proof: Let φ be the formula:

 $\forall y (\forall x (g_1(x) \neq y) \lor \forall w (g_2(w) \neq y))$

asserting that g_1 and g_2 have disjoint ranges. RCA_0^{ω} proves that φ implies $(\varphi^P)^D$. However,

 $\varphi^D = \exists z^1 \forall y \forall x \forall w ((z(y) = 0 \land g_1(x) \neq y) \lor (z(y) = 1 \land g_2(x) \neq y))$ A separating set for the ranges of g_1 and g_2 can be derived from z.

Conclusion: We can't uniformly computably convert Skolem functions into *Dialectica* terms.

References

- [1] Jeremy Avigad and Solomon Feferman. Gödel's functional ("Dialectica") interpretation. In Handbook of proof theory, volume 137 of Stud. Logic Found. Math., pages 337–405. North-Holland, Amsterdam, 1998.
- [2] Ulrich Kohlenbach. Higher order reverse mathematics. In *Reverse Mathematics 2001*, volume 21 of *Lecture Notes in Logic*, pages 281–295. ASL and A K Peters, 2005.
- [3] A. S. Troelstra. Metamathematical Investigation of Intuitionistic Arithmetic and Analysis. Volume 344 of *Lecture Notes in Math.* Springer-Verlag, Berlin-Heidelberg-New York, 1973.