Reverse Mathematics and Persistent Reals

Jeff Hirst
Joint work with François Dorais and Paul Shafer
Appalachian State University
Boone, NC

These slides are available at: www.mathsci.appstate.edu/~jlh

November 1, 2011
Midwest Computability Seminar X

Jeff Hirst's research is partially supported by the John Templeton Foundation. Any opinions expressed here are those of the author and do not necessarily reflect the views of the John Templeton Foundation.
Motto: Dichotomy is not constructive.

A result familiar to constructivists:

Theorem: $(\mathsf{E-HA}_\omega^\omega + \mathsf{QF-AC}^{0,0})$ The following are equivalent:

1. **LLPO (Lesser limited principle of omniscience)** If $f : \mathbb{N} \to \{0, 1\}$ is a function that takes the value 1 at most once, then either $\forall n(f(2n) = 0)$ or $\forall n(f(2n + 1) = 0)$.
2. If α is a real number, then $\alpha \geq 0$ or $\alpha \leq 0$.

Consequently, neither of these statements are provable in $\mathsf{E-HA}_\omega^\omega + \mathsf{AC}$.

Exegesis:

- $\mathsf{E-HA}_\omega^\omega + \mathsf{QF-AC}^{0,0}$ is a weak fragment of analysis based on intuitionistic predicate calculus.
- A real number is coded by a rapidly converging Cauchy sequence of rationals.
- If $\alpha > 0$, there is a witness. $\alpha \leq 0$ means $\neg(\alpha > 0)$.
Motto: Dichotomy is computable, but...

Theorem: \((\text{RCA}_0)\) If \(\alpha\) is a real number, then \(\alpha \geq 0\) or \(\alpha \leq 0\).

\(\text{RCA}_0\) is a weak fragment of classical analysis, specifically, ordered semi-ring axioms plus induction for \(\Sigma^0_1\) formulas plus computable comprehension.

... but not uniformly computable.

Theorem: \((\text{RCA}_0)\) The following are equivalent:

1. \(\text{WKL}_0\) (Infinite 0–1 trees have infinite paths.)
2. If \(\langle \alpha_i \rangle_{i \in \mathbb{N}}\) is a sequence of reals, then there is a set \(I \subset \mathbb{N}\) such that for all \(i, i \in I\) implies \(\alpha_i \geq 0\) and \(i \notin I\) implies \(\alpha_i \leq 0\).
Ideas from the reversal

It suffices to use the statement about sequences of reals to find a separating set for the ranges of injections with disjoint ranges.
Ideas from the reversal

It suffices to use the statement about sequences of reals to find a separating set for the ranges of injections with disjoint ranges.

Suppose the injections look like this:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(n)</td>
<td>4</td>
<td>9</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>g(n)</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>10</td>
<td>...</td>
</tr>
</tbody>
</table>

Then build these reals:

\[
\alpha_0 = \langle 0, 0, 0, 0, 0, \ldots \rangle
\]
\[
\alpha_1 = \langle 0, 0, 0, 0, 2^{-4}, 2^{-4}, 2^{-4}, 2^{-4}, \ldots \rangle
\]
\[
\alpha_2 = \langle 0, -2^{-1}, -2^{-1}, -2^{-1}, -2^{-1}, \ldots \rangle
\]

If \(I \) contains indices of non-negative reals and includes all positive reals, then \(I \) contains \(\{n \mid \alpha_n > 0\} \) and avoids \(\{n \mid \alpha_n < 0\} \), and so \(\text{range}(f) \subset I \) and \(\text{range}(g) \subset I^c \).
Since RCA$_0$ proves that sequential dichotomy implies WKL$_0$, RCA$_0$ cannot prove sequential dichotomy.

By a result of Hirst and Mummert [3], since RCA$_0$ cannot prove sequential dichotomy, E-HA$^\omega + AC + IP_{ef}^\omega$ does not prove dichotomy.

(AC is a choice scheme and IP$^\omega_{ef}$ is an independence of premise scheme for \exists-free formulas.)

The result from [3] is not a biconditional, but a *computable restriction* of sequential dichotomy can indicate a candidate for a *constructive* restriction of dichotomy.
Definition: A real α is persistent if

- $\forall s (\alpha(s) \geq 0 \rightarrow \exists t (t > s \land \alpha(t) \geq 0))$

 ... the expansion of α has no last non-negative rational and

- $\forall s (\alpha(s) \leq 0 \rightarrow \exists t (t > s \land \alpha(t) \leq 0))$

 ... the expansion of α has no last non-positive rational.

Theorem: (RCA_0)

If $\langle \alpha_i \rangle_{i \in \mathbb{N}}$ is a sequence of persistent reals, then there is a set $I \subset \mathbb{N}$ such that for all i, $i \in I$ implies $\alpha_i \leq 0$ and $i / \in I$ implies $\alpha_i \geq 0$.

Theorem: ($\hat{\text{E}} \text{-HA}_{\omega}$ \downarrow)

If α is a persistent real, then $\alpha \geq 0$ or $\alpha \leq 0$.

Moral: Reverse math can assist in formulating constructive results.
Definition: A real α is persistent if

- $\forall s (\alpha(s) \geq 0 \rightarrow \exists t (t > s \land \alpha(t) \geq 0))$

 ... the expansion of α has no last non-negative rational and

- $\forall s (\alpha(s) \leq 0 \rightarrow \exists t (t > s \land \alpha(t) \leq 0))$

 ... the expansion of α has no last non-positive rational.

Theorem: (RCA$_0$) If $\langle \alpha_i \rangle_{i \in \mathbb{N}}$ is a sequence of persistent reals, then there is a set $I \subset \mathbb{N}$ such that for all i, $i \in I$ implies $\alpha_i \leq 0$ and $i \notin I$ implies $\alpha_i \geq 0$.

Theorem: (\hat{E}-HA$^\omega$) If α is a persistent real, then $\alpha \geq 0$ or $\alpha \leq 0$.

Moral: Reverse math can assist in formulating constructive results.
Variations on persistence

Definition: A real α is k-persistent if

- $\forall s > k \ (\alpha(s) \geq 0 \rightarrow \exists t (t > s \land \alpha(t) \geq 0))$, and
- $\forall s > k \ (\alpha(s) \leq 0 \rightarrow \exists t (t > s \land \alpha(t) \leq 0))$.

Definition: h is a *modulus of persistence* for $\langle \alpha_i \rangle_{i \in \mathbb{N}}$ if for every i, α_i is $h(i)$-persistent.

Theorem: (RCA_0) ACA_0 (arithmetical comprehension) is equivalent to “every sequence of reals has a modulus of persistence.”

Theorem: (RCA_0) The following are equivalent:

1. WKL_0.
2. Every sequence of reals is component-wise equal to some sequence of 0-persistent reals.
3. Every sequence of reals is component-wise equal to a sequence that has a modulus of persistence.
Indices of minima

Theorem: [2] (RCA$_0$) The following are equivalent:

1. WKL$_0$.
2. For every sequence of reals $\langle \alpha_i \rangle_{i \in \mathbb{N}}$, there is a function $m: \mathbb{N} \to \mathbb{N}$ such that for each n, $\alpha_{m(n)} = \min\{\alpha_0, \ldots, \alpha_n\}$.

Theorem: (RCA$_0$) Fix k. If $\langle \alpha_i \rangle_{i \in \mathbb{N}}$ is a sequence such that every initial segment is pairwise k-persistent, then there is a function m such that for each n, $\alpha_{m(n)} = \min\{\alpha_0, \ldots, \alpha_n\}$.

Theorem: (E-HA$^\omega_1$ + QF-AC0,0) Fix k. Every finite sequence of pairwise relatively k-persistent reals has a minimum.
Bibliography

