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History

One of Friedman’s earliest results in reverse mathematics:

Theorem
(RCA0) The following are equivalent:

1. HB([0,1]) The Heine-Borel theorem for [0,1]: Every open
cover of a closed subset of [0,1] contains a finite subcover.

2. WKL0 Weak König’s Lemma: Every infinite 0 − 1 tree
contains an infinite path.

Friedman asked: Is there a countable set for which the
Heine-Borel theorem implies WKL0?

Answer: Yes. Q ∩ [0,1] works.

What other countable subsets of [0,1] work?
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Goals

Naı̈vely, if the separable closure of X contains uncountably
many points, then HB(X ) implies WKL0.

Unfortunately, the proof of the existence of separable closures
requires comprehension axioms beyond RCA0.

We want two notions W(X ) and S(X ) satisfying:
• RCA0 ` S(X )→ (HB(X )→WKL0)

• RCA0 `W(X )→ HB(X )

• Some sufficiently strong system will prove
∀X (S(X )∨ W(X )).
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S(X ) Heine-Borel theorem for X is strong.

The definition
S(X ) denotes: X is a subset of [0,1] and there is a countable
dense in itself set Y which is contained in every closed
superset of X .

Theorem
(RCA0) For all X , if S(X ) then HB(X )→WKL0.
Ideas from the proof
• If S(X ) then X contains a set analogous to the midpoints of

the Cantor middle third intervals.
• Given a tree with no infinite paths, the associated

“midpoints” form a closed set, with a natural cover.
• Any finite cover witnesses that the tree is finite.
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W(X ) Heine-Borel theorem for X is weak.

The definition
W(X )denotes : X is contained in a countable closed subset
F ⊆ [0,1] and there are functions f and g and a well ordering Y
satisfying:
• The function f : F → Y is one to one.
• For any b1,b2 ∈ (Q ∩ [0,1]) ∪ {−.1,1.1} with b1 < b2, if

F − (b1,b2) is nonempty, then the value of g(b1,b2) is an
element of F − (b1,b2) such that

∀x ∈ F − (b1,b2) f (x) 6 f (g(b1,b2)).

Roughly W(X ) says X is contained in a closed subset that can
be well ordered in such a way that its nicely defined closed
subsets have easily calculated maximums.



W(X ) Heine-Borel theorem for X is weak.

Theorem
(RCA0) For all X , if W(X ) then HB(X ).

Ideas from the proof
• Suppose W(X ) holds. Let A be a closed subset of X and

pick a (countable) cover of A. Add (nice open subsets of)
the complement of A to get a cover of F .
• Pick the (well-ordering) maximum element of F . Pick the

first open set in the cover that contains it.
• Pick the maximum in the remainder of F . (It’s smaller than

the previous one.) Pick the first open set in the cover that
contains it.
• Iterate. Since F is well-ordered, the process halts, yielding

the desired finite subcover.



W(X ) Heine-Borel theorem for X is weak.

Theorem
(RCA0) For all X , if W(X ) then HB(X ).
Ideas from the proof
• Suppose W(X ) holds. Let A be a closed subset of X and

pick a (countable) cover of A. Add (nice open subsets of)
the complement of A to get a cover of F .

• Pick the (well-ordering) maximum element of F . Pick the
first open set in the cover that contains it.
• Pick the maximum in the remainder of F . (It’s smaller than

the previous one.) Pick the first open set in the cover that
contains it.
• Iterate. Since F is well-ordered, the process halts, yielding

the desired finite subcover.



W(X ) Heine-Borel theorem for X is weak.

Theorem
(RCA0) For all X , if W(X ) then HB(X ).
Ideas from the proof
• Suppose W(X ) holds. Let A be a closed subset of X and

pick a (countable) cover of A. Add (nice open subsets of)
the complement of A to get a cover of F .
• Pick the (well-ordering) maximum element of F . Pick the

first open set in the cover that contains it.

• Pick the maximum in the remainder of F . (It’s smaller than
the previous one.) Pick the first open set in the cover that
contains it.
• Iterate. Since F is well-ordered, the process halts, yielding

the desired finite subcover.



W(X ) Heine-Borel theorem for X is weak.

Theorem
(RCA0) For all X , if W(X ) then HB(X ).
Ideas from the proof
• Suppose W(X ) holds. Let A be a closed subset of X and

pick a (countable) cover of A. Add (nice open subsets of)
the complement of A to get a cover of F .
• Pick the (well-ordering) maximum element of F . Pick the

first open set in the cover that contains it.
• Pick the maximum in the remainder of F . (It’s smaller than

the previous one.) Pick the first open set in the cover that
contains it.

• Iterate. Since F is well-ordered, the process halts, yielding
the desired finite subcover.



W(X ) Heine-Borel theorem for X is weak.

Theorem
(RCA0) For all X , if W(X ) then HB(X ).
Ideas from the proof
• Suppose W(X ) holds. Let A be a closed subset of X and

pick a (countable) cover of A. Add (nice open subsets of)
the complement of A to get a cover of F .
• Pick the (well-ordering) maximum element of F . Pick the

first open set in the cover that contains it.
• Pick the maximum in the remainder of F . (It’s smaller than

the previous one.) Pick the first open set in the cover that
contains it.
• Iterate. Since F is well-ordered, the process halts, yielding

the desired finite subcover.



The remaining goal

Theorem
(ACA0) The following are equivalent:

1. ATR0.
2. For every closed subset of [0,1], exactly one of W(X ) and

S(X ) holds.

Question: Are there other characterizations for W(X ) and S(X )
that would
• satisfy the goals,
• guarantee that the classes {X | S(X )} and {X | W(X )} are

subsets in submodels, and
• all us to prove the last theorem in weaker subsystems?
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