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Motivating question:

Can you prove RT(2,4) with one use of RT(2,2)?

RT(2,n) is Ramsey’s theorem for pairs and n colors:
Given f : ([N]2)→ n, we can find an infinite X ⊂ N and an
i < n such that f ([X ]2) = i .

Vocabulary:

f is a coloring with n colors.

X is an infinite monochromatic set.
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Pictures related to RT(2,2)

Theorem: (RT(2,2)) If G is the complete graph with vertices
V = {v0, v1, . . . }, and f : [V ]2 → {red, blue} colors the edges of
G, then there is an infinite S ⊂ V such that the subgraph with
vertices from S is monochromatic.
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Further motivation

RCA0 can prove RT(2,4) with two uses of RT(2,2).

Given f : [N]2 → 4, define:

g1(m,n) =

{
0 if f (m,n) ∈ {0,1}
1 if f (m,n) ∈ {2,3}

Let X = {x0, x1, . . . } be an infinite monochromatic set for g1.
Note that f ([X ]2) ∈ {0,1} or f ([X ]2) ∈ {2,3}.

Define:

g2(m,n) =

{
0 if f (xm, xn) is even
1 if f (xm, xn) is odd

Let Y be an infinite monochromatic set for g2. Then
Z = {xm | m ∈ Y } is monochromatic for f .
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Motivating question:

Can you prove RT(2,4) with one use of RT(2,2)?

Answers:

NO: The intuitionistic system iRCAω
0 cannot prove RT(2,4)

with one typical use of RT(2,2).

YES: RCA0 can prove RT(2,4) with one use of RT(2,2).



One is not enough: Vocabulary

An axiom system formulated by Kohlenbach [3]

iRCAω
0 includes:

Ê-HAω
� Intuitionistic arithmetic in all finite types with

restricted induction and primitive recursion
QF-AC1,0 A choice scheme that implies the recursive

comprehension axiom (RCA)
Note: Intuitionistic systems cannot prove

all instances of the law of the excluded middle: ¬A ∨ A

We consider problems of the form P : ∀x(p1(x)→ ∃y p2(x , y))
p1(x) means x is an instance of the problem P

p2(x , y) means y is a solution of the instance x of the
problem P.



One is not enough: What is does recursive mean?
A function f : N→ N is recursive (or computable) if there is a
deterministic algorithm that for every input number eventually
halts and outputs a number.

A set x ⊂ N is recursive if there is a recursive function f such
that x = {n ∈ N | f (n) 6= 0}.

The Recursive Comprehension Axiom formalizes: if f is a
recursive function, then the set x = {n ∈ N | f (n) 6= 0} exists.
(Note: Actually, RCA asserts the existence of sets that are
recursive relative to known sets.)

The recursive comprehension axiom is the main set existence
axiom in RCA0, the base axiom system for reverse
mathematics.
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One is not enough: Weihrauch reductions

We consider problems of the form P : ∀x(p1(x)→ ∃y p2(x , y))
p1(x) means x is an instance of the problem P

p2(x , y) means y is a solution of the instance x of the
problem P.

In this setting Q 6W P means there are computable functionals
ψ and φ such that

ψ

xQ −→ xP
↓ ↓

yQ ←− yP
φ

Note: φ can use information about xQ to compute yQ. (This is
weak reduction.)



One is not enough: Formalized Weihrauch reductions

Given problems:
P : ∀x(p1(x)→ ∃y p2(x , y)) and Q : ∀x(q1(x)→ ∃y q2(x , y))

in the language of iRCAω
0 , we use Q 6W P to abbreviate

∃ϕ∃ψ∀u (q1(u)→ (p1(ϕ(u))∧ ∀y [p2(ϕ(u), y)→ q2(u,ψ(u, y))]))

Which says that there are functionals ϕ and ψ such that
q1(u) If u is an instance of Q

p1(ϕ(u)) then ϕ(u) is an instance of P
p2(ϕ(u), y) such that whenever y is a solution the instance

ϕ(u) of the problem P
q2(u,ψ(u, y)) ψ(u, y) computes a solution to the instance u of

the problem Q

In computability theory, ϕ and ψ are computable functionals



One is not enough: What does one mean?

A theory proves Q with one typical use of P if
From q1(u) we can deduce the existence of xu, an instance
of P.
From p1(xu)→ ∃yp2(xu, y) we can deduce the existence of
vxu ,y with q2(u, vxu ,y ).

Theorem: If P and Q are nice problems then iRCAω
0 proves Q

with one typical use of P if and only if iRCAω
0 ` Q 6W P.

Nice problems: q1(u)→ (p1(x)∧ [p2(x , y)→ q2(u, v)]) is in Γ1

Proof uses modified reducibility [2], adapted from Kohlenbach.

Rutger Kuyper [4] has proved related results.
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One is not enough: The main result

Corollary:
iRCAω

0 cannot prove RT(2,4) with one typical use of RT(2,2).

Proof in three steps:

1: RT(2,4) 66W RT(2,2) Dorais, Shafer et al [1]

2: iRCAω
0 6` RT(2,4) 6W RT(2,2)

iRCAω
0 lies only by omission

3: Apply the previous theorem.



Sometimes, one is enough
Claim: RCA0 can prove RT(2,4) with one use of RT(2,2).

Sketch: Given f : [N]2 → 4, either

• ∃X infinite with f ([X ]2) ⊂ {a0,a1} ⊂ {0,1,2,3}
or
• there is no such X .
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• ∃X infinite with f ([X ]2) ⊂ {a0,a1} ⊂ {0,1,2,3}
Fix such an X = {x0, x1, . . . } and set j = 0

• there is no such X .
Let X = N and set j = 1

Define g : [N]2 → 2 by:

g(m,n) =


0 if j = 0 ∧ f (xm, xn) = a0

1 if j = 0 ∧ f (xm, xn) = a1

0 if j = 1 ∧ f (xm, xn) ∈ {0,1}
1 if j = 1 ∧ f (xm, xn) ∈ {2,3}

If Y is mono. for g, then j = 0 and {xm | m ∈ Y } is mono. for f .
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