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Introduction

In 1949, B.H. Arnold (Oregon State U.)
published a proof of the fundamental
theorem of algebra using Brouwer’s fixed
point theorem.

Fundamental theorem of algebra:
Every nonconstant polynomial with complex
coefficients has a zero.

Brouwer’s fixed point theorem:
If f : I2 → I2 is continuous, then for some
z ∈ I2, f(z) = z. In general, any continuous
map of a compact, convex space to itself has
a fixed point.



Reverse Mathematics

Theorem: (Simpson [4]) RCA0 can prove
the fundamental theorem of algebra.

Theorem: (Shioji and Tanaka [3])
RCA0 proves that these are equivalent:

1. Brouwer’s fixed point theorem for I2.

2. WKL0.

Conclusions:
1. Brouwer’s theorem is a very big
hammer to use on the FTA.
2. There should be a restricted
(computable) version of Brouwer’s thm
that could be used in Arnold’s proof.



Terminology for a computable
fixed point theorem

A computably coded continuous function:
is encoded by a computable set of 5-tuples,
each of which defines a δ neighborhood and
an ε neighborhood that contains f(δ).

A modulus of uniform continuity for f :
is a function h such that for every n,
|x− y| < 2−h(n) → |f(x)− f(y)| < 2−n.

We write f : I2 → I2 if a ccc function f is
defined at every computable point in I2.

Given f : I2 → I2 we define its extension
f? by setting f?(a) = limx→a f(x) at each
a where the limit exists, and saying f? is
undefined at other points.



A computable restriction of
Brouwer’s fixed point theorem:

Suppose that
(1) f : I2 → I2 is a computably coded

continuous function,
(2) f has a computable modulus of

uniform continuity, and
(3) f? has finitely many fixed points.
Then f has a computable fixed point.

The proof is based on:

Lemma: Suppose that
(1) f : I2 → I2 is a computably coded

continuous function, and
(2) f has a computable modulus of

uniform continuity.
Then every isolated fixed point of f? is a
computable fixed point of f .



To compute
an isolated zero of g(z) = |f(z)− z|,

• isolate the zero in a rectangle,
• cover the rectangle with δ nhoods,
• mark the nhoods where g(center point)

is very close to 0,
• draw a new smaller rectangle

containing the marked nhoods.
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Orevkov’s Construction

In [2], V.P. Orevkov constructs a ccc func-
tion f : I2 → I2 such that f? has no fixed
points.

In this construction:

f? is not total, and

f has no computable modulus
of uniform continuity.



Building computable counterexamples

Let T be an infinite computable 0-1 tree
with no computable paths.

Using T , we can build a computable
sequence of closed subintervals of [0, 1] such
that

• each pair of intervals intersect in at
most one point,
• each computable real in [0, 1] is

contained in one of the intervals, and
• there is a degree preserving

isomorphism between the points of [0, 1]
not contained in the union of the
intervals and the paths through T .
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The picture for Orevkov’s construction

To build a function with no fixed points:

•divide the square using subintervals
generated by a tree,

•map each square to the boundary of I2,

•rotate.



Question: If f : I2 → I2 is ccc and f? is
total must f have a computable fixed point?

Partial answer:

Theorem: If f : I2 → ∂I2 is ccc and f? is
total, then f has a computable fixed point.

Sketch: If f : D → ∂D and f? is total,
then f? has a fixed point on ∂D. Graph
f? : ∂D → ∂D as a function of radians.

This sort of thing can’t happen:

So f? must cross y = x someplace. Apply
the computable version of the IVT to find
the fixed point.



Theorem: Given any infinite computable
tree T with no computable paths, there is
a computably coded continuous function
f : I2 → ∂I2 such that f? is total, the only
computable fixed point of f? is (0, 0), and
there is a degree preserving isomorphism
between the noncomputable fixed points of
f? and the infinite paths through T .

Sketch: Fix T . Construct a computably
coded continuous function g : [0, 1] → [0, 1]
such that the maximum of g is 1, and there
is a degree preserving isomorphism between
{x | g?(x) = 1} and the infinite paths
through T .

Define f(x, y) = (x · g(x), 0). The only
fixed points of f occur where y = 0 and
either x = 0 or g(x) = 1.



The original task...

We wanted a restricted version of Brouwer’s
Theorem that could be used in RCA0 to
formalize Arnold’s proof of the fundamental
theorem of algebra.

Our computable version uses the condition
“f? has finitely many fixed points.”

We could use this to produce a computable
analog of Arnold’s proof, but f? can’t be
formalized in RCA0.

We need another version of the fixed point
theorem.



Theorem (RCA0) Suppose that:
(1) f : I2 → I2 is a total continuous

function,
(2) f has a modulus of uniform continu-

ity, and
(3) there is an integer m and sequences
〈nk〉n∈N and 〈〈Bk,i〉i<mk

〉k∈N such
that for each k, mk < m, each Bk,i

is an open ball of radius at most 2−k

contained in exactly one ball in the
list 〈Bk−1,i〉i<mk−1 , and for every ra-
tional point z exterior to ∪i<mk

Bk,i

we have |f(z)− z| > 2−nk .
Then f has a fixed point in I2.

What does (3) mean?
Except at m spots, |f(z)− z| is nicely
bounded away from 0.



Arnold’s proof

To show that f(z) = zn+a1z
n−1+· · ·+an

has a zero, define

R = 2 + |a1|+ · · ·+ |an|, and

g(z) =
{

z − f(z)/(Rei(n−1)θr for |z| ≤ 1
z − f(z)/(Rzn−1) for |z| > 1.

g(z) is continuous and maps the closed
disk of radius R into itself.

By Brouwer’s fixed point theorem, g(z)
has a fixed point, which is also a zero of
f(z).
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