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Introduction

In 1949, B.H. Arnold (Oregon State U.)
published a proof of the fundamental
theorem of algebra using Brouwer’s fixed
point theorem.

Fundamental theorem of algebra:
Every nonconstant polynomial with complex
coefficients has a zero.

Brouwer’s fixed point theorem:

If f: I? — I?is continuous, then for some
z € I?, f(2) = z. In general, any continuous
map of a compact, convex space to itself has
a fixed point.



Reverse Mathematics

Theorem: (Simpson [4]) RCAg can prove
the fundamental theorem of algebra.

Theorem: (Shioji and Tanaka [3])
RCA proves that these are equivalent:

1. Brouwer’s fixed point theorem for IZ.

2. WKLy.

Conclusions:
1. Brouwer’s theorem is a very big
hammer to use on the FTA.
2. There should be a restricted
(computable) version of Brouwer’s thm
that could be used in Arnold’s proof.



Terminology for a computable
fixed point theorem

A computably coded continuous function:
is encoded by a computable set of 5-tuples,
each of which defines a 0 neighborhood and
an € neighborhood that contains f(9).

A modulus of uniform continuity for f:
is a function h such that for every n,

o —yl < 27" — | f(2) - fly)| <27

We write f : I? — I? if a ccc function f is
defined at every computable point in I2.

Given f : I? — I? we define its extension
f* by setting f*(a) = lim,_,, f(x) at each
a where the limit exists, and saying f* is
undefined at other points.



A computable restriction of
Brouwer’s fixed point theorem:

Suppose that

(1) f: I? — I?is a computably coded
continuous function,

(2) f has a computable modulus of
uniform continuity, and

(3) f* has finitely many fixed points.

Then f has a computable fixed point.

The proof is based on:

Lemma: Suppose that

(1) f: I? — I?is a computably coded
continuous function, and

(2) f has a computable modulus of
uniform continuity.

Then every isolated fixed point of f* is a
computable fixed point of f.



To compute
an isolated zero of g(z) = |f(z) — z],

e isolate the zero in a rectangle,

e cover the rectangle with 0 nhoods,

e mark the nhoods where g(center point)
is very close to 0,

e draw a new smaller rectangle
containing the marked nhoods.
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Orevkov’s Construction

In 2], V.P. Orevkov constructs a ccc func-
tion f : 1> — I? such that f* has no fixed
points.

In this construction:
f* is not total, and

f has no computable modulus
of uniform continuity.



Building computable counterexamples

Let T' be an infinite computable 0-1 tree
with no computable paths.

Using 1', we can build a computable
sequence of closed subintervals of [0, 1] such
that

e cach pair of intervals intersect in at
most one point,

e cach computable real in [0, 1] is
contained in one of the intervals, and

e there is a degree preserving
isomorphism between the points of [0, 1]
not contained in the union of the
intervals and the paths through T






The picture for Orevkov’s construction

To build a function with no fixed points:

edivide the square using subintervals
generated by a tree,

emap each square to the boundary of I2,

erotate.




Question: If f : I? — I?is ccc and f* is
total must f have a computable fixed point?

Partial answer:

Theorem: If f : [? — OI? is ccc and f* is
total, then f has a computable fixed point.

Sketch: If f : D — 0D and f* is total,
then f* has a fixed point on 90D. Graph
f*:0D — 0D as a function of radians.

So f* must cross y = x someplace. Apply
the computable version of the IVT to find
the fixed point.

This sort of thing can’t happen:



Theorem: Given any infinite computable
tree T with no computable paths, there is
a computably coded continuous function
f : I? — OI? such that f* is total, the only
computable fixed point of f* is (0,0), and
there is a degree preserving isomorphism
between the noncomputable fixed points of
f* and the infinite paths through 7'

Sketch: Fix 1. Construct a computably
coded continuous function g : [0,1] — |0, 1]
such that the maximum of g is 1, and there
is a degree preserving isomorphism between
{x | g*(x) = 1} and the infinite paths
through T'.

Define f(z,y) = (z - g(x),0). The only
fixed points of f occur where y = 0 and
either x =0 or g(z) = 1.



The original task...

We wanted a restricted version of Brouwer’s
Theorem that could be used in RCAg to
formalize Arnold’s proof of the fundamental
theorem of algebra.

Our computable version uses the condition
“f* has finitely many fixed points.”

We could use this to produce a computable
analog of Arnold’s proof, but f* can’t be
formalized in RCA,.

We need another version of the fixed point
theorem.



Theorem (RCAg) Suppose that:

(1)
(2)
(3)

f : I? — I?is a total continuous
function,

f has a modulus of uniform continu-
ity, and

there is an integer m and sequences
(nk)nen and ((Bg,i)i<m, )ken such
that for each k, my < m, each By ;
is an open ball of radius at most 2%
contained in exactly one ball in the
list (Bg—1.i)i<m,_,, and for every ra-
tional point z exterior to U;«y,, Bk i
we have |f(z) — z| > 27k,

Then f has a fixed point in I°.

What does (3) mean?
Except at m spots, |f(z) — z| is nicely
bounded away from 0.



Arnold’s proof

To show that f(z) = 2" +a12" 1+ -+a,
has a zero, define

R=2+ai][ + - +an|, and

)= { 2R o<
z— f(z)/(Rz"1) for |z| > 1.

g(z) is continuous and maps the closed
disk of radius R into itself.

By Brouwer’s fixed point theorem, g(z)
has a fixed point, which is also a zero of

f(2).
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