Two combinatorial proofs
and some related questions

Jeff Hirst
Appalachian State University
Boone, NC

These slides are available at: www.mathsci.appstate.edu/~jlh

September 17, 2011
Reverse Mathematics Workshop
University of Chicago

1Jeff Hirst’s research is partially supported by the John Templeton Foundation. Any opinions expressed here are those of the author and do not necessarily reflect the views of the John Templeton Foundation.
Proof 1: Hindman’s theorem implies ACA₀

Hindman’s theorem (HT) [6] If \(f : \mathbb{N} \to k \) then there is a color \(j \) and an infinite set \(X \subset \mathbb{N} \) such that whenever \(F \subset X \) is a finite set, \(f(\sum F) = j \).

The following form of Hindman’s theorem is provable equivalent over RCA₀ [1]:

(FUT) If \(f : \mathbb{N}^{<\mathbb{N}} \to k \) then there is a color \(j \) and an infinite increasing sequence of finite sets, \(X_0 < X_1 < X_2 < \ldots \) such that whenever \(F \subset \mathbb{N} \) is a finite set, \(f(\bigcup_{i \in F} X_i) = j \).

\(X_0 < X_1 < X_2 < \ldots \) means
\[
\max(X_0) < \min(X_1) < \max(X_1) < \min(X_2) < \ldots
\]
Theorem: Over RCA₀, FUT (and hence HT) implies ACA₀.
(Theorem 2.2 of Blass, Hirst, and Simpson [1])

Ideas from the proof:

- Use FUT to prove that the range of an injection \(g \) exists.

- Given \(g \), define the coloring \(f : \mathbb{N}^\mathbb{N} \rightarrow 2 \).

- Apply FUT to \(f \) and verify that the range of \(g \) can be calculated from any monochromatic sequence.
Suppose $g : \mathbb{N} \rightarrow \mathbb{N}$ is an injection.

Given a finite set $X \subset \mathbb{N}$, define the very short gaps of X.

- Suppose X is $x_0 < x_1 < x_2 < \cdots < x_n$.
- Say that (x_i, x_{i+1}) is a very short gap of X if $x_i \cap g[x_{i+1}] \neq x_i \cap g[x_n]$.

Example:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(n)$</td>
<td>3</td>
<td>4</td>
<td>2012</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

X is \{ 2, 5, 6, 8 \}

The range of g on $(5, 8]$ contains an element less than 2, so (2, 5) is a very short gap.

The range of g on (6, 8] contains no element less than 5, so (5, 6) is not a very short gap.
Suppose $g : \mathbb{N} \to \mathbb{N}$ is an injection.

Given a finite set $X \subset \mathbb{N}$, define the very short gaps of X.

- Suppose X is $x_0 < x_1 < x_2 < \cdots < x_n$.
- Say that (x_i, x_{i+1}) is a very short gap of X if
 \[x_i \cap g[x_{i+1}] \neq x_i \cap g[x_n] \]
- Let $\text{VSG}(X)$ be the cardinality of the set of very short gaps of X.
- Define $f(X) = \text{VSG}(X) \mod 2$. ($f$ is a parity coloring.)

Apply FUT to find S, an increasing sequence of finite sets $X_0 < X_1 < X_2 < \ldots$ such that f takes the same value on every finite union.
Short gaps vs. very short gaps

(x_i, x_{i+1}) is a short gap if the range of f on (x_{i+1}, ∞) contains an element less than x_i.

Example revisited:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(n)$</td>
<td>3</td>
<td>4</td>
<td>2012</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

X is $\{2, 5, 6, 8\}$

$(2, 5)$ is a very short gap.

$(5, 6)$ is not a very short gap. $(6, 8)$ is not a very short gap.

Because $g(9) = 1$, $(2, 5)$, $(5, 6)$ and $(6, 8)$ are short gaps.

$(6, 10)$ might or might not be a short gap of $\{2, 6, 10\}$.
SG vs. VSG

\((x_i, x_{i+1})\) is a short gap if the range of \(f\) on \((x_{i+1}, \infty)\) contains an element less than \(x_i\).

Example revisited:

<table>
<thead>
<tr>
<th>(n)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(n))</td>
<td>3</td>
<td>4</td>
<td>2012</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>0</td>
<td>8</td>
<td>9</td>
<td>1</td>
</tr>
</tbody>
</table>

\(X\) is \(\{2, 5, 6, 8\}\)

\((2, 5)\) is a very short gap.

\((5, 6)\) is not a very short gap. \((6, 8)\) is not a very short gap.

Because \(g(9) = 1\), \((2, 5)\), \((5, 6)\) and \((6, 8)\) are short gaps.

\((6, 10)\) might or might not be a short gap of \(\{2, 6, 10\}\).

\(\text{SG}(X)\) is shorthand for the number of short gaps of \(X\).
The monochromatic set encodes information about the short gaps

Recall: \(f \) takes the same value on every finite union of elements of \(S = \langle X_0, X_1, \ldots \rangle \). (Parity of VSG.)

Claim: If \(F \) is a finite union of elements of \(S \), then \(SG(F) \) is even.
Proof: Fix \(F \). Pick \(n \) so big that no value less than \(\max(F) \) appears in the range of \(g \) on \((\min(X_n), \infty)\). Consider \(F \cup X_n \).

- The short gaps of \(F \) are also very short gaps of \(F \cup X_n \).
- The very short gaps of \(X_n \) are also very short gaps of \(F \cup X_n \).
- \((\max F, \min X_n)\) is not a very short gap \(F \cup X_n \).
- Summarizing: \(VSG(F \cup X_n) = SG(F) + VSG(X_n) \)

Since \(VSG(F \cup X_n) = VSG(X_n) \mod 2 \), \(SG(F) \) is even.
Claim: If F is a finite union of elements of S and $X \in S$ satisfies $F < X$, then $(\max F, \min X)$ is not a short gap.

Proof: Visualize $\text{F}(\max F, \min X)\text{X}$. $\text{SG}(F \cup X_n) = \text{SG}(F) + \text{SG}([\max F, \min X]) + \text{SG}(X)$ so $0 = 0 + \text{SG}([\max F, \min X]) + 0 \mod 2$.

Claim: The range of g is computable from S.

Proof: $\exists t(g(t) = n)$ iff $\exists t < \min X_{n+1} (g(t) = n)$
Proof 2: RT_2^2 implies the Free Set Theorem for pairs

Free Set Theorem for pairs ($\text{FS}(2)$): If $f : [\mathbb{N}]^2 \to \mathbb{N}$ then there is an infinite set $X \subset \mathbb{N}$ such that for all $(i, j) \in [X]^2$, if $f(i, j) \in X$ then $f(i, j) = i$ or $f(i, j) = j$.

Theorem: RCA_0 plus Ramsey’s theorem for pairs and two colors (RT_2^2) proves $\text{FS}(2)$. (Appears in Cholak, Guisto, Hirst, and Jockusch [2].)

Proof: Suppose $f : [\mathbb{N}]^2 \to \mathbb{N}$ and assume RT_2^2. We can use RT_5^2, if we like.
Define $g : \mathbb{N}^2 \to 5$ by the formula $g(i, j) = \begin{cases}
0 & \text{if } f(i, j) < i \\
1 & \text{if } f(i, j) = i \\
2 & \text{if } f(i, j) \in (i, j) \\
3 & \text{if } f(i, j) = j \\
4 & \text{if } j < f(i, j) \end{cases}$ and let M be an infinite set that is monochromatic for g.

- $g([M]^2) = 1$ implies FS(2) for M, since $f(i, j)$ is always i.
- $g([M]^2) = 3$ implies FS(2) for M, since $f(i, j)$ is always j.
- If $g([M]^2) = 4$, define $N \subset M$ by setting:
 $n_0 = m_0$, $n_1 = m_1$, and n_{i+1} is the least element of M greater than $\max\{f(n_j, n_k) \mid 0 \leq j < k \leq i\}$.
 N satisfies FS(2).
A more challenging case:

\[g([M]^2) = 0. \] (So \(f(i, j) < i \) for all \(i, j \in M. \))

For each \(i \) and \(j \) define the sequence \(\sigma_{ij} \) as follows:
• A more challenging case:

\[g([M]^2) = 0. \] (So \(f(i, j) < i \) for all \(i, j \in M \).)

For each \(i \) and \(j \) define the sequence \(\sigma_{ij} \) as follows:

Continue as long as the sequence decreases.

Define

\[h : [M]^2 \to 2 \] by letting \(h(i, j) \) be the parity of the length of \(\sigma_{ij} \).

Apply \(\text{RT}^2 \) and find an infinite monochromatic set \(X \) for \(h \).

If \(i, j, \) and \(f(i, j) \) are all in \(X \), then \(\sigma_{ij} = f(i, j) \sim \sigma_{f(i,j),j} \), contradicting that their lengths have the same parity. Thus, if \(i, j \in X \), then \(f(i, j) \notin X \), so \(X \) satisfies \(\text{FS}(2) \).
• The last case: $g([M]^2 = 2$. (So $i < f(i,j) < j$ for all $i,j \in M$.)

As in the previous case, for each i and j define a sequence:

\[i \rightarrow \tau_{ij}(0) \rightarrow j \]
The last case: \(g([M]^2) = 2 \). (So \(i < f(i, j) < j \) for all \(i, j \in M \).) As in the previous case, for each \(i \) and \(j \) define a sequence:

\[
\begin{array}{c}
 i \\
 \tau_{ij}(0) \\
 \tau_{ij}(1) \\
 j \\
\end{array}
\]

Repeat as long as the sequence increases. (It's bounded above by \(j \).)

Let \(h(i, j) \) be the parity of the length of \(\tau_{ij} \), and argue as before.
Suppose \(f : \mathbb{N}^{<\mathbb{N}} \rightarrow r \). Say that

- \(f \) is stable-t if for every \(t \) there is a \(b \) such that \(f \) is constant on all sets containing \(t \) and meeting \((b, \infty)\).
- \(f \) is stable-c if for every \(t \) there is a \(b \) such that \(f \) is constant on all sets containing \(t \) and of size at least \(b \).

Conj: \(\text{RCA}_0 \) proves that FUT for stable-t colorings is equivalent to polarized Ramsey’s Theorem for pairs.

Conj: \(\text{ACA}_0 \) proves FUT for stable-c colorings.

Does stable-c FUT imply \(\text{ACA}_0 \)?

Is there a related version of COH?
Thin set for unions (TSU): Suppose $f : \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}$. Then there is an infinite increasing sequence of finite sets, $X_0 < X_1 < X_2 < \ldots$ such that $\{f(\bigcup_{i \in F} X_i) \mid F \in \mathbb{N}^{<\mathbb{N}}\} \neq \mathbb{N}$.

There is also a free set theorem for unions FSU (see [2]).

Exer: RCA_0 proves HT \to TSU.

Does TSU imply anything?

Prop: Milliken's theorem for triples implies FSU. [2]

Does HT imply FSU?

Does Milliken's theorem for triples imply the thin set theorem for all k?

Does the polarized thin set theorem imply anything?

How about the polarized free set theorem?
Bibliography

