Nonuniformity in Reverse Mathematics

Jeffry L. Hirst

Department of Mathematical Sciences Appalachian State University

(in collaboration with Carl Mummert, U. of Michigan)

Copies of these slides can be found at: www.mathsci.appstate.edu/~jlh

Reverse Mathematics

Goal: Determine what set existence axioms are needed to prove familiar theorems.

Method: Prove results of the form

 $\mathsf{RCA}_0 \vdash \mathbf{AX} \leftrightarrow \mathbf{THM}$

where:

- \bullet RCA_0 is a weak axiom system,
- \bullet $\mathbf{A}\mathbf{X}$ is a set existence axiom selected from a small hierarchy of axioms, and
- **THM** is a familiar theorem.

RCA_0 : Recursive Comprehension

Language:

Integer variables: x, y, z Set variables: X, Y, Z

Axioms:

basic arithmetic axioms

 $(0, 1, +, \times, =, and < behave as usual.)$

Restricted induction $(\psi(0) \land \forall n(\psi(n) \rightarrow \psi(n+1))) \rightarrow \forall n\psi(n)$ where $\psi(n)$ has (at most) one x quantifier.

Recursive set comprehension If $\theta \in \Sigma_1^0$ and $\psi \in \Pi_1^0$, and $\forall n(\theta(n) \leftrightarrow \psi(n))$, then there is a set X such that $\forall n(n \in X \leftrightarrow \theta(n))$

What can RCA_0 prove?

Arithmetic needed for coding.

Lots of finite graph theory, e.g.

Theorem 1. (RCA_0) Every finite graph with no odd cycles is bipartite.

A little analysis, e.g.

Theorem 2. (RCA₀) If $\langle I_n \rangle_{n \in \mathbb{N}}$ is a sequence of nested real intervals, then there is a real number in their intersection.

What can RCA_0 prove?

A little infinite graph theory:

Theorem 3. (RCA_0) Every 2-regular graph with no odd cycles and exactly two connected components can be 2-colored.

Proof. Given one designated vertex in each connected component, the 2-coloring can be "computed." $\hfill\square$

Weak König's Lemma

Statement: Big very skinny trees are tall.

More formally: If T is an infinite tree in which each node is labeled 0 or 1, then T contains an infinite path.

 WKL_0 is RCA_0 plus Weak König's Lemma.

Note: $RCA_0 \not\vdash WKL_0$

Some reverse mathematics!

Theorem 4. (RCA_0) The following are equivalent:

- $1. WKL_0$
- 2. If $\langle G_i \rangle_{i \in \mathbb{N}}$ is an infinite sequence of infinite 2-regular graphs each of which has no odd cycles and exactly two connected components, then there is a sequence $\langle f_i \rangle_{i \in \mathbb{N}}$ of functions such that for each i, f_i is a 2coloring of G_i .

The proof of $1 \rightarrow 2$ consists of a construction of an infinite 0 - 1 tree such that any path through the tree codes all the desired 2-colorings. The converse is (perhaps) more entertaining...

Toward the reversal:

Theorem 5. (RCA₀) *The following are equivalent: 1.* WKL₀

2. If f and g are one to one functions with disjoint ranges, then there is a set X such that for all x, $f(x) \in X$ and $g(x) \notin X$.

To prove that $2 \rightarrow 1$, we work in RCA_0 and use the statement about sequences of graphs to deduce the existence of a separating set. Suppose that f and g are injections with disjoint ranges, f(2) = 0, g(1) = 1, and 2 is in the range of neither function. Build G_0, G_1 , and G_2 as follows:

Nonuniformity

 RCA_0 proves our statement about 2-colorings for a single graph, but does not prove the statement for infinite sequences of graphs.

In general, we are interested in situations where

 $\mathsf{RCA}_{\mathsf{0}} \vdash \forall X \exists Y \theta(X, Y)$

but

 $\mathsf{RCA}_{\mathbf{0}} \not\vdash \forall \langle X_i \rangle \; \exists \langle Y_i \rangle \; \forall n \theta(X_n, Y_n).$

Encoding the reals
A real number is a function
$$x : \mathbb{N} \to \mathbb{Q}$$
 such that
 $\forall k \forall i \ |x(k) - x(k+i)| \le 2^{-k}$

(that is, $\langle x(i) \rangle_{i \in \mathbb{N}}$ is a rapidly converging Cauchy sequence of rationals.)

Examples of reals

- $\sqrt{2}: \qquad 1, 1.4, 1.41, 1.414, 1.4142, \dots$ $\pi: \qquad 3, 3.1, 3.14, 3.141, 3.1415, \dots$ $0: \qquad 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$
- $0: 0, 0, 0, 0, 0, \dots$

Relationships between reals

$$x = y \text{ means: } \forall k |x(k) - y(k)| \le 2^{-k+1}$$
$$x \le y \text{ means: } \forall k (x(k) \le y(k) + 2^{-k+1})$$

$$y < x$$
 means $x \not\leq y$,
which is $\exists k \ (y(k) + 2^{-k+1} < x(k))$

Theorem 6. (RCA₀) If $\langle x_i \rangle_{i \leq n}$ is a finite sequence of reals, then there is a $j \leq n$ such that x_j is the minimum of the sequence.

Theorem 7. (RCA₀) *The following are equivalent: 1.* WKL₀

2. If $\langle x_k \rangle_{k \in \mathbb{N}}$ is a sequence of reals, then there is a sequence of integers $\langle \mu_k \rangle_{k \in \mathbb{N}}$ such that

 $\forall k(x_{\mu_k} = \min\{x_j \mid j \le k\}).$

Sketch of (2) implies WKL_0

Suppose f and g are injections with disjoint ranges. Use a sequence of indices of minima to construct a separating set.

If f(3) = 0, g(2)=1, and $2 \notin \mathsf{Ran} f \cup \mathsf{Ran} g$, build:

$x_{0,f}:$	0	0	0	0001
$x_{0,q}$:	0	0	0	0
$x_{1,f}:$	-1	-1	-1	-1
$x_{1,q}:$	-1	-1 -1	L.001	-1.001
$x_{2,f}:$	-2	-2	-2	-2
$x_{2,g}$:	-2	-2	-2	-2

A stronger axiom system: Arithmetical Comprehension

 ACA_0 is RCA_0 plus the following comprehension scheme:

For any formula $\theta(n)$ with only number quantifiers, the set $\{n \in \mathbb{N} \mid \theta(n)\}$ exists.

Note: $WKL_0 \not\vdash ACA_0$, but $ACA_0 \vdash WKL_0$ The tool:

Theorem 8. (RCA_0) The following are equivalent: 1. ACA_0

2. If $f : \mathbb{N} \to \mathbb{N}$ is 1-1, then Ran(f) exists.

Two forms of Dedekind cuts Lower Dedekind cuts: a set $\emptyset \subsetneq \lambda \subsetneq \mathbb{Q}$ such that

$$\forall s \in \mathbb{Q} \forall s' \in \mathbb{Q} \left((s \in \lambda \land s' \notin \lambda) \to s < s' \right).$$

Open Dedekind cuts: a lower Dedekind cut σ with no greatest element.

Theorem 9. (RCA_0) Every Dedekind cut is equal to an open cut.

Theorem 10. (RCA_0) The following are equivalent:

- 1. ACA₀.
- 2. If $\langle \lambda_i \rangle_{i \in \mathbb{N}}$ is a sequence of Dedekind cuts, then there is a sequence $\langle \sigma_i \rangle_{i \in \mathbb{N}}$ of open cuts such that for every $i \in \mathbb{N}, \ \lambda_i = \sigma_i$.

Part of the proof of Theorem 10

We want: *Dedekind cuts* \rightarrow *open cuts* implies ACA₀.

Suppose $f : \mathbb{N}^+ \to \mathbb{N}$ is an injection. We'll find its range.

Define the sequence $\langle \lambda_i \rangle_{i \in \mathbb{N}}$ of Dedekind cuts by putting $q \in \mathbb{Q}$ in λ_i if and only if:

 $q \leq 0$ or q > 0 and $(\exists t < 1/q)(f(t) = i)$.

Informally,

if $i \notin \text{Range}(f)$, then $\lambda_i = (-\infty, 0] \cap \mathbb{Q}$, and if f(t) = i, then $\lambda_i = (-\infty, 1/t) \cap \mathbb{Q}$.

If σ_i is an open cut with $\sigma_i = \lambda_i$, then $i \in \text{Range}(f)$ if and only if $0 \in \sigma_i$.

Carl Mummert's nice example

Theorem 11. (RCA_0) Every 2×2 real valued matrix has a Jordan decomposition.

Theorem 12. (RCA_0) *The following are equivalent: 1.* ACA_0 .

2. Given a sequence of 2×2 real valued matrices, we can find the sequence of their Jordan forms.

Carl and Jeff's conjecture

Conjecture 13. If $\widehat{\mathsf{HA}}^{\#}$ proves a Π_2^1 statement of the form $\forall A \exists B \Theta(A, B)$, where Θ is arithmetical, then the uniformized statement

 $\forall \langle A_n \rangle_{n \in \mathbb{N}} \exists \langle B_n \rangle_{n \in \mathbb{N}} \forall n \Theta(A_n, B_n)$

is provable in RCA_0 .

The contrapositive essentially asserts that if we can reverse the uniformized version of a Π_2^1 statement, then the original statement is not provable in an axiomatization of a substantial fragment of intuitionistic analysis.

A few references

Simpson, S. *Subsystems of Second Order Arithmetic*, Springer-Verlag, 2000.

Simpson, S. (Editor) Reverse Mathematics 2001, ASL, 2005.

Hirst, J. Connected components of graphs and reverse mathematics, Archive for Mathematical Logic, **31** (1992) 183–192.

Hirst, J. Minima of initial segments of infinite sequences of reals, Mathematical Logic Quarterly, **50** (2004) 47–50.

Hirst, J. *Representations of reals in reverse mathematics*, submitted.

Hirst, J. and Mummert, C. *Reverse mathematics and uniformity in proofs without excluded middle*, in preparation.

Copies of these slides can be found at: www.mathsci.appstate.edu/~jlh