Resistivity Surveying

Electrical Methods

Chapter 12
Geologic Resistivity 1101

- Resistivity surveying investigates variations of electrical resistance, by causing an electrical current to flow through the subsurface using wires (electrodes) connected to the ground.
 - Resistivity = 1 / Conductivity

But what exactly is “Resistivity?”...

A multi electrode resistivity survey

A close-up of an electrode
Resistance, Voltage, & Current

• An analogy…
 – To get water to circulate through the system below...
 • Must provide a push

• Electricity is acts in a similar way...
 – To get current to flow you must provide a push...
 • The “push” is called a potential difference or voltage
 – Symbol: p.d. V or ΔV (V [=] volts)
 • The “flow” is called the current
 – Symbol: I (I = amperes / amps)
Resistance, Voltage, & Current

• The amount of potential difference required to push a given current is directly proportional to the “Resistance”

• Ohm’s Law: \[R = \frac{V}{I} \]

 – Resistance [=] Ohms (symbol = \(\Omega \))
 – But this chapter is about resistivity, not resistance...
 – Resistance, \(R \neq \) Resistivity, \(\rho \) (rho)
 • They are related, but are fundamentally different things...

How do we measure resistance? Why does this work?

[Diagram of electrical circuit with ammeter, voltmeter, and resistance. Graph showing slope equal to resistance.]
Resistivity...Finally

- **Resistance depends on:**
 - The material properties
 - i.e. the resistivity, ρ (so, yes, ρ is a material property!)
 - The shape of the material that has current flowing through it.

$$ R = \rho \frac{l}{a} \quad \text{Or...} \quad \rho = R \frac{a}{l} $$

- **R = Resistance, $a =$ cross sectional area, $l =$ length**

- **Therefore...**
 - Resistance is higher when current is forced through a:
 - Small area
 - Long length
Resistivity...How Do We Measure It?

• So, now, you can probably figure out how we measure the resistivity of a material
 – Apply a known potential difference (measured with voltmeter) to a circuit with a resistive material of known length and cross-sectional area.
 – Then measure the current (with ammeter)
 – This gives the resistance, R
 • Use the length and cross sectional area to calculate ρ

But wait! Doesn’t adding these devices to the circuit change the overall resistance?
Resistors in Series

- A “series” circuit has more than one resistor in series (one after the other)
 - Series: all current must travel the same path
- Two or more resistors in series behave like one resistor with an equivalent resistance, R_{eq} of...

$$R_{eq} = R_1 + R_2$$

Or in general...

$$R_{eq} = \sum_{i=1}^{n} R_n$$

This rule does not apply to all electrical devices. E.g., capacitors are different.
Resistors in Parallel

- Parallel circuit: The current can take multiple paths
- A “parallel” circuit has more than one resistor in parallel (the current is split among the Rs)

\[
R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} \quad \text{Or in general...} \quad R_{eq} = \left(\sum_{i=1}^{n} \frac{1}{R_n} \right)^{-1}
\]
Measuring Resistivity

- **Voltage is measured by a voltmeter**
 - Plugged in parallel with the R of interest
 - Hi R value

- **Current is measured by an ammeter**
 - Plugged in series along the branch of the circuit shared by the R of interest
 - Low R value

\[
R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = R_1 \quad (R_2 \approx \infty)
\]

\[
R_{eq} = R_1 + \left(R_2 \approx 0\right) = R_1
\]

So, the ammeter and voltmeter do not have an effect on the circuit’s resistance
Resistivity of Geologic Materials

- The resistivity of the subsurface depends upon:
 - The presence of certain metallic ores
 - Especially metallic ores
 - The temperature of the subsurface
 - Geothermal energy!
 - The presence of archeological features
 - Graves, fire pits, post holes, etc...
 - Amount of groundwater present
 - Amount of dissolved salts
 - Presence of contaminants
 - % Porosity and Permeability
Atomic Charge?

• Recall that matter is conceptualized as being made of atoms:
 – + charged nucleus (protons + neutrons)
 – - charged electrons circle the nucleus in a cloud pattern
 – Usually these charges are balanced
 • E.g. H₂O, NaCl, KAl₂Si₂O₈, (Mg,Fe)₂SiO₄
 – An imbalance in charge (i.e. ions), gives a body a net charge.
 • SO₄²⁻, O²⁻
 – Resistivity is concerned with the FLOW of charge, not the net charge or any imbalance in charges
Types of Conduction

• Conduction refers to the flow of electricity (or other types of energy)
 – For electric conduction: Three basic flavors

• Electrolytic / Ionic
 – Slow movement of ions in fluid

• Electronic
 – Metals allow electrons to flow freely

• Di-electric
 – Electrons shift slightly during induction
 • We won’t cover this
Conduction in the Earth

- In rocks, two basic types of conduction occur
 - Electronic: Electrons are mobile in metallic ores and flow freely
 - Metals (wires) and some ore bodies
 - Electrolytic / Ionic: Salts disassociate into ions in solution and move
 - Involves motion of cations (+) and anions (-) in opposite directions

(a) rock

(b) metal or conducting ore
Archie’s Law

- Porous, water-bearing rocks / sediments may be ionic conductors. Their “formation resistivity” is defined by Archie’s Law:
 \[\rho_t = a \rho_w \phi^{-m} s_w^{-n} \]

- Archie’s law is an empirical model
 - Note the exponents...what does this imply about the range of resistivity of geologic materials?

 \(\phi \equiv \) porosity
 \(s_w \equiv \) water saturation
 \(a \approx 0.5 - 2.5 \)
 \(n \approx 2 \) if \(s_w \geq 0.3 \)
 \(m \equiv \) cementation \(\approx 1.3 \) (Tertiary) – 2.0 (Palaeozoic)
Rock & Mineral Resistivities

• Largest range of values for all physical properties.
• Native Silver = 1.6×10^{-8} Ohm-m (Least Resistive)
• Pure Sulphur = 10^{16} Ohm-m (Most Resistive)

Table 12.1 Resistivities of some rocks and minerals

<table>
<thead>
<tr>
<th>Rocks, minerals, ores</th>
<th>Resistivity (ohm-m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sediments</td>
<td></td>
</tr>
<tr>
<td>chalk</td>
<td>50–150*</td>
</tr>
<tr>
<td>clay</td>
<td>1–100</td>
</tr>
<tr>
<td>gravel</td>
<td>100–5000</td>
</tr>
<tr>
<td>limestone</td>
<td>50–10^7</td>
</tr>
<tr>
<td>marl</td>
<td>1–100</td>
</tr>
<tr>
<td>quartzite</td>
<td>10–10^8</td>
</tr>
<tr>
<td>shale</td>
<td>10–1000</td>
</tr>
<tr>
<td>sand</td>
<td>500–5000</td>
</tr>
<tr>
<td>sandstone</td>
<td>1–10^8</td>
</tr>
<tr>
<td>Igneous and metamorphic rocks</td>
<td></td>
</tr>
<tr>
<td>basalt</td>
<td>10–10^7</td>
</tr>
<tr>
<td>gabbro</td>
<td>1000–10^6</td>
</tr>
<tr>
<td>granite</td>
<td>100–10^6</td>
</tr>
<tr>
<td>marble</td>
<td>100–10^8</td>
</tr>
<tr>
<td>schist</td>
<td>10–10^4</td>
</tr>
<tr>
<td>slate</td>
<td>100–10^7</td>
</tr>
</tbody>
</table>

Minerals and ores
- silver 1.6×10^{-8}
- graphite, massive ore 10^{-4}–10^{-3}
- galena (PbS) 10^{-2}–10^2
- magnetite ore $1–10^5$
- sphalerite (ZnS) 10^3–10^6
- pyrite 1×100
- chalcopyrite 1×10^{-5}–0.3
- quartz 10^{10}–2×10^{14}
- rock salt 10^{-13}

Waters and effect of water and salt content
- pure water 1×10^6
- natural waters $1–10^3$
- sea water 0.2
- 20% salt 5×10^{-2}
- granite, 0% water 10^{10}
- granite, 0.19% water 1×10^6
- granite, 0.31% water 4×10^3

*Values or ranges, which have come from several sources, are only approximate.
General Rules of Thumb For Resistivity

Highest R

Igneous Rocks
Why? Only a minor component of pore water

Metamorphic Rocks
Why? Hydrous minerals and fabrics

Sedimentary Rocks
Why? Abundant pore space and fluids

Clay: super low resistivity

Lowest R
General Rules of Thumb For Resistivity

Highest R

Older Rocks

Why? More time to fill in fractures and pore space

Lowest R

Younger Rocks

Why? Abundant fractures and/or pore space
Subsurface Current Paths

- About 70% of the current applied by two electrodes at the surface stays within a depth equal to the separation of the electrodes.
- Typically your electrode spacing is 2x your target depth.
 - But this depends on array type (we’ll cover this later).
Subsurface Current Paths

- Why does electricity spread out and follow a curved path in the subsurface?
 - A thin layer has a large resistance
 - Electricity follows the path or area of least resistance

\[R = \rho \frac{l}{a} \]
A Typical Resistivity Meter

- A resistivity meter consists of both a voltmeter and a current meter (ammeter).
- Most systems report the ratio V/I instead of each one separately
 - Gives the resistance
 - The resistance can then be converted into resistivity using geometrical parameters based on the type of array. (We’ll come back to this...)

A resistivity meter is basically a current meter and voltmeter all in one.
How Many Electrodes?

- Most modern resistivity systems typically utilize at least four electrodes
 - Large (and unknown) contact resistance between the electrode and the ground could otherwise give inaccurate readings.
 - To understand why four electrodes are better than two, let's look at the circuit setup...
A Circuit Model
A Circuit Model

[Diagram of a circuit model with labeled resistors and components]
Note: the Voltmeter has an infinite resistance so we can add 2Rc to it without error (eliminate each Rc on the right branch). This leaves us with R=V/I
Typical Resistivity Stats

- The applied voltage (to the current electrodes) is \(~100\) V
- \(\Delta V\) (at the potential electrodes) \(\approx\) millivolts \(\rightarrow\) a few volts
- Current: milliamps or less
 - So you can get a shock, but it is not dangerous
- Current flow is reversed a few times per second to prevent ion buildup at electrodes
Vertical Electrical Sounding

• Resistivity surveys do not usually seek to determine the resistivity of some uniform rock
 – They seek to determine the “apparent resistivity” of several horizontal layers with different resistivities
• Also called “VES”, depth sounding, or electrical drilling
• The essence of VES is to expand electrodes from a fixed center
 – I.e. to increase at least some of the electrode spacings
 – Larger spacings cause electricity to penetrate deeper into the ground
• To understand VES, lets look at some current paths...
Vertical Electrical Sounding

- When electrode spacing is small compared to the layer thickness...
 - Nearly all current will flow through the upper layer
 - The resistivities of the lower layers have negligible effect
 - The measured apparent resistivity is the resistivity of the upper layer

But what happens when a flowing current encounters a layer with a different resistivity?

Refraction!!!
Current Refraction

- Current Refracts towards the normal when going into a layer with greater resistivity
 - Not the same as Snell’s Law!
 - This is opposite behavior from seismic refraction (unless you think in terms of a conductivity change)
 - The relationship is: \(\rho_1 \tan \theta_1 = \rho_2 \tan \theta_2 \)
Current Refraction

• Because refraction changes the distribution of current in a layered subsurface
 – The ratio of V/I changes
 – We can therefore measure changes in resistivity with depth
Apparent Resistivity

- In a VES survey the ratio V/I is measured with increasing electrode spacing...
 - The ratio changes for two reasons:
 1. Layers of differing resistivity are encountered
 2. The electrodes are now farther apart
 - Causes measured resistance to decrease!
 - To determine #1, we must first correct for #2
Apparent Resistivity

• Current diverges at one electrode and converges at the other.
 – Current flow lines trace out a banana-like shape.
• Recall that \(R \) is directly proportional to length and inversely proportional to cross sectional area.
• At depth 2d:
 – The length of the path is doubled.
 – The cross sectional length is doubled in both dimensions, so area is 4x.
 – The measured resistance (V/I) will be \(\frac{1}{2} \) as much.

\[
R = \rho \frac{l}{a} = \rho \frac{2l}{4a} = \frac{1}{2} \rho \frac{l}{a}
\]
Apparent Resistivity

• To account for the effects of changes in electrode spacing, the apparent resistivity is found as:

\[\rho_a = \alpha \frac{V}{I} \]

• Here, \(\alpha \) is a “geometrical factor”
 – equal to \(a/l \) for a rod (see previous slides)
 – The geometrical factor varies depending on array configuration / type
 • I’ll show some common array types later

• For reasons that you will soon see, apparent resistivity \(\rho_a \) is what is typically used
Wenner Arrays

- Pronounced “Venner”. This is the most commonly used in the U.S.
- All four electrodes are equally spaced. Spacing = a
- Geometrical correction factor = $2\pi a$
- Measure resistance (V/I)
- Calculate apparent resistivity

$$\rho_a = 2\pi a \frac{V}{I}$$

- Repeat for a range of spacings
Wenner VES Survey

• Two measuring tapes are laid out

• Spacing is increased progressively (Gives nearly constant spacing in Log space)
 – 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 4, 6 etc...see book (pg 188)

• The survey is stopped when a desired depth is reached
 – Depth \(\approx \frac{1}{2} \) outer electrode distance

• To be efficient, many people are needed

• Modern systems use lots of electrodes
 – Computer does switching
 – Mimics various array types
Wenner VES Survey

- Results of ρ_a are plotted as $\log_{10}\rho_a$ versus $\log_{10}a$
 - Use logs to help accommodate the large range in values

For a simple two layer scenario: (multiple layers are more complex)

- The first few spacings:
 - Electrical current mostly flows in the upper layer
 - So the apparent resistivity is the actual resistivity of the upper layer

- At spacings that are large compared to layer 1’s thickness:
 - Most of the length that the current travels is in the lower layer
 - So the apparent resistivity is the resistivity of the lower layer

How do we determine layer thickness?
Wenner VES Survey

- To determine layer thickness
- Note that the left curve reaches the lower layer’s resistivity sooner
 - So, all other factors equal, the first layer must be thinner
- In practice, determining thickness is not so easy because how quickly you reach the lower layer’s resistivity also depends on the resistivity contrast
 - Large resistivity contrasts have a similar effect to thinner layers and vice versa.
- Resistivities and thicknesses are instead best found by using “Master curves” that are calculated for different values of thickness and resistivity
Wenner Array Master Curves: 2-Layer Case

- To reduce the number of graphs needed, master curves are normalized on both axes. Plotted in Log-Log space
 - Overlay your data on a master curve and find the curve that matches

\[\rho_a = \text{calculated apparent resistivity} \]
\[\rho_1 = \text{resistivity of top layer} \]
\[a = \text{electrode separation} \]
\[h = \text{thickness of top layer} \]

Both plots **MUST BE THE SAME SCALE**!

I.e. a change in log of 1 on each data axis must match the master curve’s change of 1 log on each axis

\[\frac{\rho_a}{\rho_1} = 1 \]
\[\frac{\rho_a}{\rho_1} = \infty \]
\[\frac{\rho_a}{\rho_1} = 0 \]

\[\frac{a}{h_1} = 1 \]
\[\frac{a}{h_1} = 0 \]

\[\rho_a, \rho_1 \]
Master Curve: 2-Layer Example

- To determine the resistivities of a two layer system:
 - Make a plot of $\log_{10} a$ (electrode spacing) vs. $\log_{10} \rho_a$ (apparent / measured resistivity)
 - Scale the plots to be the same size
 - So a \log_{10} change of 1 on your graph is the same size as the master curve
 - Slide your data around until you find a curve that it best matches
 - Find the a/h_1 line on the master curve. Where this crosses your data’s x-axis is the layer thickness.
 - Find the ρ_a / ρ_1 line on the master curve. Where this crosses your data’s y-axis is the resistivity of the first layer.
 - The resistivity of the second layer can be found by multiplying the first layer’s resistivity by the best-fitting curve’s ρ_a / ρ_1 ratio

Illustrator Demo
Master Curve: 2-Layer Example

- So for this data:
 - The data best fit the $\rho_a / \rho_1 = 6$ master curve
 - $h_1 = 0.2$ m
 - $\rho_1 = 18.9$ ohm-m
 - $\rho_2 = 18.9 \times 6 = 113$ ohm-m
Multiple Layers

- If there are more than two layers:
 - The plot probably never reaches the resistivity of layer 2 even at large separations.
 - Increasing spacing penetrates into layer 3.
 - Visual inspection can tell how many layers are present.
 - Each kink or curvature change shows the presence of a new layer
 - But this is only a minimum. Some layers may lack large and visible contrasts.

![Diagram of multiple layers](image)
Multiple Layers

- If there are more than two layers:
 - The thicknesses and resistivities of each layer are modeled using computer programs.
 - The program guesses at the number of layers and makes a theoretical plot.
 - Parameters are changed until a satisfactory fit is achieved.

(a) apparent resistivity plot

(b) model
Other Array Types

- Lots of other resistivity arrays exist.
- Schlumberger is commonly used (especially in Europe)
 - Only C electrodes are moved
 - Saves time!
 - Eventually ΔV becomes small
 - P electrodes are moved and then process is repeated
- Each has its own set of master curves and software
The BGS Offset Wenner Array System

- Multi-electrode arrays are now commonly used.
 - A computer-controlled switch box turns electrodes on-off
 - Can get a lateral and vertical data in one step
 - Can also assess error and lateral variations.

(a)

(b)

(1)

(2)

(3)

(4)

(5)

(c)

A: C P P C
C: C P C P
D₁: C P P C
D₂: C P P C
B: C P C P
VES Limitations

- Maximum depth of detection depends on:
 - Electrode spacing (rule of thumb depth = \(\frac{1}{2} \) C electrode spacing)
 - Resistivity contrasts between layers
 - Limits of detection of small \(\Delta V \)
 - Low-resistivity layers result in \(\Delta V \) becoming very small
 - Large spacings cause \(\Delta V \) to become small

- Layers may have spatially-variable resistivities
 - If so, electrical profiling may be a better choice
 - If not, you can interpolate lateral continuity
VES Limitations

- Layers may have anisotropic resistivity
 - Resistivity may be much greater perpendicular to layering
 - e.g. bedding, laminations, foliation
 - Horizontal laminations cause layer thicknesses to be overestimated

- Sandwiched thin layers produce non-unique results due to refraction
 - If middle unit has much higher resistivity
 - t/p is constant, so a 2x thicker unit with ½ resistivity would produce the same results.
 - If middle unit has much lower resistivity
 - t/p is constant, so a 2x thicker layer with 2x resistivity would produce the same results
 - Called ‘equivalence’
Electrical Profiling

• Lateral changes in resistivity can be effectively mapped using electrical profiling.
 – Can use similar arrays to VES
 – Patterns vary depending on what array is used
 – Patterns are complicated because electrodes may be in zones of different properties.
Electrical Imaging

- Because resistivity may vary both laterally and vertically, neither VES or electrical profiling may give the desired results.
- To image lateral and vertical changes, electrical imaging is used
 - Involves expanding and moving arrays
 - produces a pseudosection
 - pseudosections do not reveal the actual properties, but do show useful patterns
Pseudosection ---> True Section

• With the aide of computers, pseudosections can be converted into approximately ‘true sections’

Caveats:
• edges are blurred
• actual contrasts are underestimated

(a) pseudosection

(b) ‘true’ section

Wenner array: minimum electrode a spacing 20 m
distance along traverse (m)

depth (m)

rectangular block

resistivity (ohm-m)
Final Remarks

• **Like all geophysical techniques resistivity:**
 – Produces non-unique results
 • Data should be compared to known geological data (e.g. boreholes)
 • Similar rocks have a wide range in resistivities depending on water content
 • Lithology changes do not necessarily correspond to a resistivity change
 • Resistivity changes do not necessarily correspond to a lithology change
 – So, without sound geological knowledge, resistivity data may be misleading.