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Abstract. We analyze the positive solutions to


−∆v = λv(1− v); x ∈ Ω0,

∂v
∂η + γ

√
λv = 0; x ∈ ∂Ω0,

where Ω0 = (0, 1) or is a bounded domain in Rn; n = 2, 3 with

smooth boundary and |Ω0| = 1, and λ, γ are positive parameters.

Such steady state equations arise in population dynamics encapsu-

lating assumptions regarding the patch/matrix interfaces such as

patch preference and movement behavior. In this paper, we will

discuss the exact bifurcation diagram and stability properties for

such a steady state model.

1. Introduction

Let Ω0 = (0, 1) or be a bounded domain in Rn; n = 2, 3 with smooth

boundary ∂Ω0 and |Ω0| = 1. Let Ω = {`x | x ∈ Ω0}, where ` is a pos-

itive parameter. We will consider a population that satisfies a logistic

growth in the patch Ω. We will assume that the diffusion rate in Ω
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is D and that Ω is surrounded by a matrix ΩM , where the diffusion

rate is D0 and the death rate is S0, all three positive parameters. Fur-

ther assuming r > 0 is the patch intrinsic growth rate and κ > 0 is a

parameter encapsulating assumptions regarding the patch/matrix in-

terface such as patch preference and movement behavior, the resulting

model is (see [10], [11], & [4]):

(1)


ut = D∆u+ ru(1− u

K
); x ∈ Ω,

D ∂u
∂η

+
√
S0D0

κ
u = 0; x ∈ ∂Ω,

with steady state equation

(2)


−∆u = 1

D
ru(1− u

K
); x ∈ Ω,

D ∂u
∂η

+
√
S0D0

κ
u = 0; x ∈ ∂Ω,

or equivalently:

(3)


−∆u = `2

D
ru(1− u

K
); x ∈ Ω0,

∂u
∂η

+ `S∗

Dκ
u = 0; x ∈ ∂Ω0,

where K is the carrying capacity, and S∗ =
√
S0D0.

In this paper, we will be interested in the case when the density is

continuous at the interface, that is when κ = 1. This corresponds to the

case when the organisms move between the patch and the matrix with
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equal probability. Moreover, the step sizes and movement probabilities

from the random walk are equal in the patch and the matrix (see [10]

& [4]). Now applying the change of variables v = u
K

, λ = r`2

D
, and

γ = S∗
√
rD

, (3) reduces to:

(4)


−∆v = λv(1− v); x ∈ Ω0,

∂v
∂η

+ γ
√
λv = 0; x ∈ ∂Ω0.

In this paper, we study existence, non-existence, uniqueness results,

and stability properties for (4). To precisely state our results, we first

consider the eigenvalue problem

(5)


−∆w = λw; x ∈ Ω0,

∂w
∂η

+ γ
√
λw = 0; x ∈ ∂Ω0.

It follows that (5) has a principal eigenvalue λ1(γ) > 0 and has a

corresponding eigenfunction w > 0 in Ω0 (see Appendix). We establish:

Theorem 1.1. Given any γ > 0,

(a) If λ > λ1(γ) then the trivial solution of (4) is unstable and

there exists a unique positive solution vλ to (4) which is glob-

ally asymptotically stable. Furthermore, ‖vλ‖∞ → 0+ as λ →

λ1(γ)+ and ‖vλ‖∞ → 1 as λ→∞;
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Figure 1. An illustration of the bifurcation curve for
(4) as established in Theorem 1.1.

(b) If λ ≤ λ1(γ) then the trivial solution of (4) is globally asymp-

totically stable and there is no positive solution to (4).

Note that λ1(γ)→ 0 as γ → 0+.

We prove our results via the method of sub-super solutions and the

principle of linearized stability. We provide the proof of Theorem 1.1

in Section 2. In Section 3, for the case n = 1, we provide an alternate

proof of our results in the case Ω = (0, 1) via a quadrature method and

discuss the evolution of the bifurcation curves as γ varies. In Section

4, we discuss biological implications of our results.

2. Proof of Theorem 1.1

Let λ and γ be fixed and let σ1 be the principal eigenvalue and φ > 0

in Ω0 be the corresponding eigenfunction such that ‖φ‖∞ = 1 to the
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eigenvalue problem:

(6)


−∆φ− λφ = σφ; x ∈ Ω0,

∂φ
∂η

+ γ
√
λφ = 0; x ∈ ∂Ω0.

Note that (6) is the linearization of (4) about the trivial solution.

Clearly σ1 ≥ 0 when λ ≤ λ1(γ) and σ1 < 0 when λ > λ1(γ). Let

λ > λ1(γ) and ψ := δφ for δ > 0 to be chosen later. Then

−∆ψ − λψ(1− ψ) = δ[σ1 + λδφ]φ; x ∈ Ω0,

and

∂ψ

∂η
= δ

∂φ

∂η
= −δγ

√
λφ = −γ

√
λψ; x ∈ ∂Ω0.

Hence ψ = δ1φ with any δ1 ∈
(
0,−σ1

λ

)
is a strict subsolution of (4)

(since ‖φ‖∞ = 1), and ψ = δ2φ with

δ2 = − σ1

λ

[
min
Ω0

φ

]

is a supersolution of (4). Clearly δ2 > δ1, and hence by the method of

sub-super solutions (see [8]), (4) has a positive solution vλ ∈ (δ1φ, δ2φ]

for λ > λ1(γ). Note here that when λ → λ1(γ)+, [−σ1] → 0+ while

min
Ω0

φ 6→ 0 (see (5)). Thus, δ1 → 0+ and δ2 → 0+, and, in particular,

‖vλ‖∞ → 0+ as λ→ λ1(γ)+.
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Next, assume (4) has two positive solutions v1 and v2. Without loss

of generality, we can assume v2 is the maximal positive solution (since

w = 1 is a global supersolution) and hence v2 ≥ v1 in Ω0. Supposing v1

and v2 are distinct, by integration by parts (Green’s second identity),

we obtain

∫
Ω0

[(∆v2)v1 − (∆v1)v2] dx =

∫
∂Ω0

[(
∂v2

∂η

)
v1 −

(
∂v1

∂η

)
v2

]
ds

=

∫
∂Ω0

[(
−γ
√
λv2

)
v1 −

(
−γ
√
λv1

)
v2

]
ds

= 0,

while

∫
Ω0

[(∆v2)v1 − (∆v1)v2] dx =

∫
Ω0

[(−λv2(1− v2))v1 + (λv1(1− v1))v2] dx

=

∫
Ω0

λv1v2(v2 − v1) dx

> 0.

This is a contradiction, and hence v1 ≡ v2 and (4) has a unique positive

solution vλ for λ > λ1(γ).
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Figure 2. An illustration of the bifurcation curve for (7).

Note also that the Dirichlet boundary value problem:

(7)


−∆ψ = λψ(1− ψ); x ∈ Ω0,

ψ = 0; x ∈ ∂Ω0,

has a unique positive solution ψλ for λ > λD1 with ‖ψλ‖∞ < 1 and

‖ψλ‖∞ → 1− as λ→∞, where λD1 > 0 is the principal eigenvalue of

(8)


−∆w = λw; x ∈ Ω0,

w = 0; x ∈ ∂Ω0.

Since ∂ψ
∂η

< 0 in Ω0, clearly ψλ is a subsolution to (4) for λ >> 1,

and since w = 1 is a supersolution to (4) for λ >> 1, we must have

vλ ∈
[
ψλ, 1

]
and hence ‖vλ‖∞ → 1− as λ→∞.
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Also, when λ ≤ λ1(γ) (which implies σ1 ≥ 0), if v is a positive

solution of (4), by Green’s second identity, we obtain

∫
Ω0

[(∆v)φ− (∆φ)v] dx =

∫
∂Ω0

[(
−γ
√
λv
)
φ−

(
−γ
√
λφ
)
v
]
ds

= 0,

while

∫
Ω0

[(∆v)φ− (∆φ)v] dx =

∫
Ω0

[(−λv(1− v))φ+ σ1φv + λφv] dx

=

∫
Ω0

[
λv2φ+ σ1φv

]
dx

> 0.

Hence, we have a contradiction and therefore (4) has no positive solu-

tions when λ ≤ λ1(γ).

The principle of linearized stability (see [13], for example) immedi-

ately gives that the trivial solution of (4) (as a steady state of (1))

is asymptotically stable whenever λ ≤ λ1(γ) (which implies σ1 ≥ 0)

and unstable whenever λ > λ1(γ) (which implies σ1 < 0), where σ1 is

the principle eigenvalue of the linearized problem (6) associated with

the trivial solution of (4). In the case that λ > λ1(γ), we have already

shown the existence of a unique positive solution of (4), vλ. Recall that
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we have ψ = δ1φ is a strict subsolution for all δ1 ∈
(
0,−σ1

λ

)
and Z ≡M

is a strict supersolution for all M > 1. This implies that φ < vλ < Z

and φ can be made arbitrarily small and Z can be made arbitrarily

large. This fact combining with a result such as Theorem 5.6.7 of [13]

immediately shows that vλ is globally asymptotically stable. In the

case that λ ≤ λ1(γ), the stability of the trivial solution is global due

to the nonexistence of a positive solution of (4). Hence, Theorem 1.1

is proven.

3. One-dimensional Problem

In the case Ω0 = (0, 1), equation (4) reduces to the two-point bound-

ary value problem

(9)


−v′′ = λv(1− v); x ∈ (0, 1),

v′(0) = γ
√
λv(0),

v′(1) = −γ
√
λv(1).

From Theorem 1.1, (9) has a unique positive solution when λ > λ1(γ)

and no positive solution when λ < λ1(γ), where λ1(γ) is the principle
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Figure 3. Shape of positive solutions to (10).

eigenvalue of

(10)


−v′′ = λv; x ∈ (0, 1),

v′(0) = γ
√
λv(0),

v′(1) = −γ
√
λv(1).

A straightforward calculation will show that λ1(γ) = 4
(
π
2
− tan−1

(
1
γ

))2

.

Note that as γ → 0+, λ1(γ)→ 0 and as γ →∞, λ1(γ)→ π2 = λD1 .

We now use the quadrature method introduced by Laetsch in [9] and

further extended in [1], [5], [6], [7], and [12]. Suppose u is a positive

solution with u(1
2
) = ρ (say) and u(0) = q (say). Note that since (9)

is autonomous, the solution must be symmetric about t = 1
2

and take

the form shown in Figure 3.
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Multiplying the differential equation in (9) by u′ and integrating

yields

u′(t) =
√

2λ(F (ρ)− F (u(t))); t ∈
[
0,

1

2

]
where F (z) =

∫ z
0
s(1− s) dt. Further integration yields

∫ u(t)

q

ds√
F (ρ)− F (s)

=
√

2λ; t ∈
[
0,

1

2

]
,

and hence, setting t→ 1
2
, we obtain:

√
λ =
√

2

(∫ ρ

q

ds√
F (ρ)− F (s)

)
.

Now the boundary conditions require that ρ and q satisfy:

(11) F (ρ) =
2F (q) + γ2q2

2
.

Note that given ρ ∈ (0, 1), there exists a unique q = q(ρ) ∈ (0, ρ)

satisfying (11), and we can show that

G(ρ) =
√

2

∫ ρ

q(ρ)

ds

F (ρ)− F (s)

is well defined and continuous on (0, 1).
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Further, given ρ ∈ (0, 1), for λ satisfying

(12)
√
λ = G(ρ) =

√
2

∫ ρ

q(ρ)

ds√
F (ρ)− F (s)

.

(9) has a positive solution of the form given in Figure 3 defined by:

∫ u(t)

q(ρ)

ds√
F (ρ)− F (s)

=
√

2λt; t ∈
[
0,

1

2

)
.

Hence (12) describes the bifurcation diagram for positive solutions of

(9). Using Mathematica computation, we provide below this bifurca-

tion diagram for several values of γ. In particular, we illustrate the

evolution of the bifurcation diagram as γ → 0+ and γ →∞ in Figures

4 and 5, respectively. Note that when γ → 0+, we approach the Neu-

mann boundary condition case, and when γ → ∞, we approach the

Dirichlet Boundary condition case.

4. Biological Implications of Our Results

These model results give important predictions on population per-

sistence at the patch level based solely on demographic parameters,

e.g. patch diffusion rate and intrinsic growth rate, as well as matrix

diffusion rate and death rate. We note that our assumption of κ = 1

or Continuous Density at the patch/matrix interface supposes that or-

ganisms do not detect the change between the patch and matrix. Thus,
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Figure 4. Bifurcation curves for (9) as γ → ∞ gener-
ated in Mathematica. The curves correspond (from left
to right) to γ = 1, γ = 10, and γ = 100. Note that as
γ →∞, the bifurcation curves approach π2, which is the
first eigenvalue of the Dirichlet problem.

Figure 5. Bifurcation curves for (9) as γ → 0+ gener-
ated in Mathematica. The curves correspond (from left
to right) to γ = .1, γ = .5, and γ = 1. Note that as
γ → 0+, the bifurcation curves approach 0, which is the
first eigenvalue of the Neumann problem.
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they freely cross the boundary of the patch having a probability of re-

maining in the patch of 50% and do not adjust their movement behavior

in the matrix. The principal eigenvalue, σ1, of (6) plays a crucial role

in determining the dynamics of the model. In fact, it represents the

fastest possible growth rate for the linear growth model corresponding

to (1) (see [3] or [2]).

As indicated in Theorem 1.1 (and the proof therein), when λ ≤ λ1(γ)

we have that σ1 ≥ 0 and the only nonnegative steady state of (1) is

the trivial one, u ≡ 0. In this case, the model predicts extinction

for any nonnegative initial population density profile. In fact, loses

due to mortality in the matrix outpace the reproductive rate in the

patch. Thus, the theoretical organism cannot colonize the patch and

any remnant population in the patch will become extinct. However,

when λ > λ1(γ) we have that σ1 < 0 and (1) admits a unique steady

state that is positive in Ω, such that all positive initial population

density profiles will propagate to this steady state over time. In this

case, the global nature of the stability of the positive steady state gives

a fairly strong notion of persistence of the species. The patch is large

enough in this case to shield a sufficient proportion of the population

from mortality induced by the hostile matrix. This prediction leads to

a formula for minimum patch size of the population given as `∗(γ) =



BIFURCATION DIAGRAM FOR A REACTION DIFFUSION EQUATION 15√
D
r
λ1(γ). Note that this formula can be numerically estimated and

depends upon parameters in the patch (diffusion rate and intrinsic

growth rate), parameters in the matrix via γ (diffusion rate and death

rate), and the geometry of the patch Ω0.

This notion of a minimum patch size agrees with the well known no-

tion of a minimum core area (in the case of n = 2) requirement. Note

that λ1(γ) can be viewed as a quantification of the loss of the popula-

tion due to interactions with the hostile matrix where γ encapsulates

parameters regarding the hostile matrix. Also, it is easy to see that

λ1(γ)→ λD1 as γ →∞ and this reveals an important model prediction

of the existence of a maximum possible effect of population loss due to

the hostile matrix. Patches with a lethal matrix can still be guaran-

teed a prediction of persistence as long as the patch size is larger than√
D
r
λD1 , where the maximum effect of the lethal matrix on the popula-

tion is quantified in λD1 . This minimum patch size approaches infinity

if either 1) the patch diffusion rate is arbitrarily large, since a large

diffusion rate ensures that a very high proportion of the population

will encounter loss at the patch/matrix interface, or 2) the intrinsic

growth rate is arbitrarily small, which for a fixed patch diffusion rate

will imply that the population is not able to recover the loss associated

with interaction with hostile matrix.
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Appendix A. Some Results for the Eigenvalue Problem (5)

Consider the multiparameter eigenvalue problem

(13)


−∆z = λz; x ∈ Ω0,

∂z
∂η

= µz; x ∈ ∂Ω0.

We recall the following result from [14].

Theorem A.1. The first eigencurve λ1(µ) ⊂ R2 is Lipschitz continu-

ous, strictly decreasing, and concave. Furthermore, λ1(0) = 0, and the

eigenfunction associated with any point on λ1(µ) is strictly positive.

Considering the eigenvalue problem (5), let µ = −γ
√
λ. Define

A,B ⊂ R2 by A := {(µ, λ) | λ = λ1(µ)} and B := {(µ, λ) | µ =

−γ
√
λ}. Since A is concave and B is convex, it follows from Theo-

rem A.1 that A ∩ B is a single point, say (µ1, λ1), with µ1 = −γ
√
λ1.

Therefore, (5) has a principal eigenvalue λ1(γ) > 0 with corresponding

eigenfunction w > 0 in Ω0.

We now wish to show that limγ→∞ λ1(γ) = λD1 . For any µ ∈ R, we

may characterize λ1(µ) by

(14) λ1(µ) = min
u∈H1(Ω0)\{0}

∫
Ω0
|∇u|2 dx− µ

∫
∂Ω0

u2 ds∫
Ω0
u2 dx

.
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Let λD1 be the principle eigenvalue of (8) with corresponding eigen-

function φD1 chosen such that
∫

Ω0
φD1 = 1. Testing (14) with u = 1 and

u = φD1 shows that

λ1(µ) ≤ −µ |∂Ω0|
|Ω0|

and

λ1(µ) ≤ λD1 ,

respectively. Taking a sequence µn → −∞ such that the corresponding

eigenfunctions un, without loss of generality, satisfy
∫

Ω0
un dx = 1, we

observe that

λ1(µn) =

∫
Ω0

|∇un|2 dx− µn
∫
∂Ω0

u2
n ds.

Since µn < 0, we have 0 = λ1(0) < λ1(µn) < λD1 .

By Theorem A.1, limµ→−∞ λ1(µ) = λ1(−∞) ≤ λD1 for some λ1(−∞) ∈

R. Without loss of generality, we may assume −µn
∫
∂Ω0

u2
n ds→ α ≥ 0,

and thus
∫
∂Ω0

u2
n → 0.

Since {un} is bounded in H1(Ω0), we may select a subsequence so

that un ⇀ u in H1(Ω0), un → u in L2(Ω0) and in L2(∂Ω0). It follows

that
∫

Ω0
u2 dx = 1 and

∫
∂Ω0

u2 ds = 0, and hence u ∈ H1
0 (Ω0).
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By the weak lower semicontinuity of
∫

Ω0
|∇u|2 dx, we get that,

∫
Ω0

|∇u|2 dx + α ≤ lim inf
n→∞

(∫
Ω0

|∇un| dx− µn
∫
∂Ω0

u2
n ds

)
= λ1(−∞) ≤ λD1 .

But by Poincare’s Inequality, we have λD1 ≤
∫

Ω0
|∇u|2 dx, and hence we

must have α = 0 and λ1(−∞) = λD1 . Furthermore,
∫

Ω0
|∇u|2 dx = λD1 ,

and thus, without loss of generality, u = φD1 . Moreover, limn→∞
∫

Ω0
|∇un|2 dx =∫

Ω0
|∇u|2 dx, and hence un → u = φD1 in H1(Ω).
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