
Convolution and Blurring

We have seen that the convolution operation is a key aspect of edge detection methods.
The basic approach we used does not work so well for noisy images, but we will see that
the situation can be improved using other convolution kernels. In the process, we will
discover how to mathematically describe blurring of an image, which is a necessary step in
understanding how image restoration (deblurring) methods work.

1 Problems with Edge Detecting

In the previous notes, the kernels denoted as K1 and K2 are called sobel kernels. They are
particularly useful in detecting, respectively, vertical and horizontal edges in an image. The
kernel K3 is called a Laplacian, is direction invariant, and, in general, can detect edges in
any direction. However, because it is detecting sharp changes in intensity, it is very sensitive
to noise.

Noise can be thought of as small random variations in the pixel values of the original
image. These random variations can have different probability distributions; the most com-
mon are normal (some times called Gaussian white noise) and Poisson. We can generate a
noisy image in Matlab as follows:

I = imread(’logo.tif’);

In = imnoise(I, ’gaussian’);

The statement imnoise(I, ’gaussian’) adds random entries to the pixel values of I. The
random entries are normally distributed with mean 0 and variance 0.01. We can change
these values. For example, if we want to use mean 0 and variance 0.2, then we can use the
statement imnoise(I, ’gaussian’, 0, 0.2). Increasing the variance like this is equivalent
to increasing the level of noise in the image.

Problem 1 Create a Matlab script m-file with the following statements:

I = imread(’logo.tif’);

In = imnoise(I, ’gaussian’, 0, 0.1);

K3 = [0 -1 0;-1 4 -1;0 -1 0];

O3 = conv2(I, K3, ’same’);

level3 = graythresh(O3);

O3 = im2bw(O3,level3);

On3 = conv2(In, K3, ’same’);

level3n = graythresh(On3);

On3 = im2bw(On3,level3n);

subplot(2,2,1), imshow(I,[]), title(’Original Image’)

subplot(2,2,2), imshow(In,[]), title(’Noisy Image’)

subplot(2,2,3), imshow(O3,[]), title(’Edges of original image’)

subplot(2,2,4), imshow(On3,[]), title(’Edges of noisy image’)

1



Run the script, and observe what happens to the performance of the Laplacian when used
on the noisy image. Reduce the variance from 0.1 to 0.01, 0.001, etc., and determine the
point at which the edges can be detected accurately, without additional objects appearing in
the image.

As we can see from the previous problem, it is difficult to detect edges in noisy images!
To get around this, we might first try to remove the noise. However, this can be a difficult
problem, since we may not know the source or the precise level of the noise. Another way to
get around this is to reduce the importance of the noise by “smoothing” it out. Smoothing
can be done by averaging neighboring pixels, which is implemented by convolving the noisy
image with certain kernels. For example, one could use any of the kernels:

1

9




1 1 1
1 1 1
1 1 1


 ,

1

10




1 1 1
1 2 1
1 1 1


 ,

1

16




1 2 1
2 4 2
1 2 1


 ,

In some sense these kernel are too local for very noisy images, and a larger kernel is often
needed. The most common averaging scheme is to use a Gaussian kernel of the form:

exp

(−r2

2σ2

)
,

where r2 = x2+y2. This kernel can be constructed in Matlab using the following statement:

K = fspecial(’gaussian’, [n, n], sigma);

where [n, n] is the dimension of the desired kernel, and sigma is the standard deviation of
the Gaussian.

Problem 2 Try the following statements in Matlab:

K = fspecial(’gaussian’, [3,3], 0.5)

sum(K(:))

K = fspecial(’gaussian’, [5,5], 0.5)

sum(K(:))

K = fspecial(’gaussian’, [32,32], 2);

sum(K(:))

mesh(K)

Notice that each time you sum the entries in the kernel you get the same result. Why? In
the last case, the kernel is too large to display all of the entries on the screen, so we use mesh

to plot it.

The Gaussian kernel can be used in detecting edges of noisy images by inserting the
following statements into your script file:

2



K = fspecial(’gaussian’, [32, 32], 2);

In = conv2(In, K, ’same’);

You may have to play around with the value of sigma for the various noise levels. We also
should note that there are many other approaches that can be used for edge detection, which
can be found in books on image processing.

2 Blurring Kernels

The purpose of these notes is not to find a good edge detection method, but to observe what
happens when an image is convolved with a Gaussian kernel.

Problem 3 In Matlab, try the following:

I = imread(’logo.tif’);

K1 = fspecial(’gaussian’, [32,32], 1);

K2 = fspecial(’gaussian’, [32,32], 2);

K3 = fspecial(’gaussian’, [32,32], 3);

K4 = fspecial(’gaussian’, [32,32], 4);

O1 = conv2(I, K1, ’same’);

O2 = conv2(I, K2, ’same’);

O3 = conv2(I, K3, ’same’);

O4 = conv2(I, K4, ’same’);

figure(1), clf

subplot(2, 2, 1), imshow(O1, [])

subplot(2, 2, 2), imshow(O2, [])

subplot(2, 2, 3), imshow(O3, [])

subplot(2, 2, 4), imshow(O4, [])

figure(2), clf

subplot(2, 2, 1), mesh(K1)

subplot(2, 2, 2), mesh(K2)

subplot(2, 2, 3), mesh(K3)

subplot(2, 2, 4), mesh(K4)

How does the value of sigma affect the mesh plot of the Gaussian kernel? How does it affect
the convolved image?

The point of the previous problem is to notice that by convolving an image with certain
kernels, the result is a blurred image. An important problem in image processing is restoring
images that are degraded by blurring; that is, we want to undo the convolution operation
that caused the blurring. The difficulty is, given a picture, how do we know the convolution
kernel that caused the blur?

3



3 Point Spread Function

Image restoration (sometimes called deblurring or deconvolution) problems arise in many
applications. For example, ground based telescopes used by astronomers and the military
record images that are blurred when the light travels through the atmosphere. Another
example occurs when hardware limitations cause microscopic images to be out of focus. In
these cases, computational methods are used to remove the blur. The first problem, though,
is to determine the convolution kernel that mathematically describes the particular blur.

In some rare situations a mathematical formula may be known for the convolution kernel,
but in most cases it must be determined experimentally using the imaging system. The most
common approach is to find how a single point of light is blurred by the imaging system.
The single point of light is called a point source, and the blurred image of the point source
is called the point spread function.

Problem 4 You should convince yourself that the point spread function is the convolution
kernel. You can do this with a small example. Suppose the point source image is denoted by
I, and the convolution kernel by K; that is,

I =




0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0




, K =




k11 k12 k13 k14 k15

k21 k22 k23 k24 k25

k31 k32 k33 k34 k35

k41 k42 k43 k44 k45

k51 k52 k53 k54 k55




Using zero boundary conditions, show that the convolution of K and I produces K.

So now, to get the point spread function (i.e., convolution kernel), we need to generate
an image of a point source. What constitutes a point source depends on the application. For
example, when using a telescope to collect images in space, the point source can be a single
bright star. In microscopy, though, the point source is typically a fluorescent microsphere
having a diameter which is about half the diffraction limit of the lens. From now on we will
assume that a point spread function is given with every blurred image.

The next big question is: Given the point spread function and the blurred image, how
do we “undo” the convolution, and hence remove the blur. As will be seen later, this is a
very difficult problem, and is the subject of our research.

4


