
Introduction to Scientific Computing with Matlab

Matlab is an interactive system for numerical computations. It is widely used in uni-
versities and industry, and has many advantages over languages such as C, Fortran and Java,
including:

• It is very easy to write Matlab code to solve complex problems in mathematics,
sciences and engineering.

• Data structures in Matlab require minimal attention. Arrays, for example, do not
need to be declared.

• Matlab has high quality graphics and visualization tools that can be used to analyze
computational results.

• Matlab provides additional toolboxes that are designed to solve specific classes of
problems. For example, there are toolboxes for statistics, image processing, signal
processing, differential equations, splines and optimization.

Because Matlab is an “interpretive” language codes written in C, C++ and Fortran can
be more efficient for very large problems. However, Matlab is an excellent for developing
algorithms and problem solving environments.

Starting and Exiting Matlab.

• Log into one of the computers in the Math/CS lab.

• In a terminal window, at the prompt enter the command: matlab6.

• When Matlab starts up, a Matlab gui interface should appear on the screen. The
command window contains a prompt that looks like:

>>

We can enter data and execute commands at this prompt.

• To exit Matlab, you can pull down the File menu, and let go on Exit MATLAB.
Alternatively, in the command window, you can use the exit command:

>> exit

Matlab gets its name from Matrix labratory. A matrix is a 2-dimensional array of num-
bers, with a certain number of rows and columns. For example:

A =




200 107 −10 52
0 221 13 25

−7 1 194 3




1



is a matrix with 3 rows and 4 columns. We often say A is a 3× 4 matrix.
A matrix with only one row is sometimes called a row vector. A matrix with only one

column in sometimes called a column vector. For example, if

x =




−1
0
2
5
6




or y =
[

20 −15 10 16
]

,

then we say x is a column vector of length 5, and y is a row vector of length 4. Matlab is
very useful for solving problems involving matrices and vectors. We explore some of these
basics through a series of examples.

Initializing Vectors. We can create row and/or column vectors in Matlab as follows:

>> x = [1 2 3 4]

>> x = [1

2

3

4]

>> x = [1, 2, 3, 4]

>> x = [1; 2; 3; 4]

Note that we can also refer to these as either 1× 4 or 4× 1 matrices.

Initializing Matrices. In general, we can create matrices with more than one row and
column just as we did above. Here are some examples:

>> A = [1 2 3 4

5 6 7 8

9 10 11 12]

>> A = [1 2 3 4; 5 6 7 8; 9 10 11 12]

Array Operations. Matlab supports certain array operations that can be very useful in
scientific computing applications. Some of these operations are:

.* ./ .̂

2



The dot indicates that the operation is to act on the matrices in an element by element way.
That is, 



1
2
3
4


 .∗




5
6
7
8


 =




5
12
21
32







1
2
3
4


 .̂ 3 =




1
8
27
64




Initializing Vectors with Many Entries. Suppose we want to create a vector, x, con-
taining the values 1, 2, . . . , 100. We could do this using a loop:

n = 100;

for i = 1:n

x(i) = i;

end

In this example, when the code begins, how does Matlab know x will be a vector of length
100? The answer to this question is: it does not know! But Matlab has a very smart
memory manager that creates space as needed. Forcing the memory manager to work a lot
can make codes very inefficient.

Fortunately, if we know how many entries x will have, then we can help out the memory
manager by first allocating space using the zeros function. Here is how we might do it:

n = 100;

x = zeros(1,n);

for i = 1:n

x(i) = i;

end

In general, the function zeros(m,n) creates an m × n array containing all zeros. Thus, in
our case, zeros(1,n) creates a 1× n array, which is just a row vector with n entries.

Actually, there is a much easier, and better way, to initialize a simple vector like this
using Matlab’s vector operations. This can be done as follows:

n = 100;

x = 1:n;

The colon operator is very useful! Let’s see another example where we use it to create a
vector. Suppose we want to create a vector, x, containing n entries equally spaced between

3



a = 0 and b = 1. The distance between each of the equally spaced points is given by

h =
b− a

n− 1
=

1

n− 1
, and the vector, x, should therefore contain the entries:

0, 0 + h, 0 + 2 ∗ h, · · · , (i− 1) ∗ h, · · · , 1

We can create a vector with these entries, using the colon operator, as follows:

n = 100;

h = 1 / (n-1);

x = 0:h:1;

We often want to create vectors like this in mathematical computations. Therefore, Matlab
provides a function for it, called linspace. In general, linspace(a, b, n) generates a
vector of n equally space points between a and b. So, in our case with a = 0 and b = 1, we
can use:

n = 100;

x = linspace(0, 1, n);

The moral is: If we want to do something fairly standard, then chances are Matlab provides
an optimized function for it. To find out, we could use the help and/or lookfor commands.

Evaluating Functions and Plotting. Suppose we want to plot the function sin(3πx) on
the interval 0 ≤ x ≤ 1. We learned the basic idea of plotting when we were six years old:
Plot a bunch of points (xi, yi), and connect the dots. We can do this in Matlab by:

• create a vector of x-coordinates

• create a vector of y-coordinates

• use the Matlab command plot(x,y)

This can be done as follows:

n = 100;

x = linspace(0, 1, n);

y = zeros(1, n);

for i = 1:n

y(i) = sin(3*pi*x(i));

end

plot(x, y)

Note that in this code we have

• used the linspace command to efficiently create the vector x,

4



• helped out the memory manager by using the zeros command to allocate space for
the vector y,

• used a loop to generate the entries of y one at at time,

• and used the plot command to draw the graph.

We can actually shorten this code by replacing the loop with a single, vector operation. In
general, functions like sin can be use on arrays of entries. That is, if z is an m × n array
containing entries zij, then sin(z) is an m × n array containing the entries sin(zij). Thus,
we can do the above computations simply as:

n = 100;

x = linspace(0, 1, n);

y = sin(3*pi*x);

plot(x,y)

If you can use array operations instead of loops, then you should do it. In general, array
operations are more efficient than using loops.

Finally, we mention that for easy functions, we can use Matlab’s inline and ezplot

commands. For example, to plot f(x) = sin(3πx) on the interval 0 ≤ x ≤ 1, use:

f = inline(’sin(3*pi*x)’);

ezplot(f, [0, 1])

Function mfiles and Script mfiles. So far we have only used Matlab as a sophisticated
calculator. It is much more powerful than that, and should be thought more as a computer
language. Therefore, there should be some capability for writing sophisticated programs,
which include functions, subroutines, structures, classes, objects, etc. Matlab has all of
these capabilities, but since this is not a Matlab programming class, we cannot go into
details about them.

However, we should be aware at least of two types of programs that we can write: scripts
and functions. Each kind of program is written using your favorite editor, and should be
saved in a file with the .m extension. The difference between a script and a function is:

• A script is a file containing a collection of Matlab commands which are executed
when the name of the file is entered at the Matlab prompt. This is very convenient
if you have to enter a lot of commands. But you must be careful: variables in a script
are global to the Matlab session, and it can be easy to unintentionally change values
in certain variables.

• A function is a file containing a collection of Matlab commands that are executed
when the function is called. The first line of a function must have the form:

5



function [out1, out2,... ] = FunctionName(input1, input2, ...)

Any data or variables created within the function are private, and so there is less of
a chance of accidentally changing a variable. You can have any number of inputs to
the function. If you want to pass back results from a function, then you can specify
any number of outputs. Functions can call other functions, and in this way you can
write sophisticated programs as in any powerful language such as C, Fortran and Java.
The beauty of Matlab, though, is that you do NOT need to declare variables as int,
double, double[], etc.

For additional information on functions, please see other, more complete references.

Naming Functions and Scripts. Matlab is case sensitive both in terms of variables, and
with respect to the names of functions and script files. As mentioned above, these should
all have names of the form:

FunctionName.m or ScriptName.m

Matlab has a lot of built in functions available for your use. For example, if you want to
find the roots of a polynomial, there is a function available for this purpose – you don’t need
to write your own. To find out more about this function, use the help command:

>> help roots

All Matlab functions are named with lower case letters. If you write a function with the
same name, Matlab has a way of choosing which function to use. To be sure that you
(or Matlab) don’t get confused over which one to use, you might include some upper case
letters in your function name. For example, if you wanted to name a function roots, you
might use Roots.m instead of roots.m.

Getting Help. Matlab has two useful commands for getting help:

• The help command can be used to get some basic help on how to use a Matlab
function. For example, if we want to know how to use Matlab’s plot command, we
can use:

>> help plot

The difficulty with this command is that we have to know that there is a function with
the name plot. For example, suppose we try:

>> help polynomial

Matlab will respond with a message saying there are no functions called polynomial.m.
But Matlab is a sophisticated package, so there must be some functions that can be
used to manipulate polynomials. How do we find these functions?

6



• One way is to use the lookfor command, which searches for functions that reference
key words. So we can try:

>> lookfor polynomial

and see what is found.

7


