PROBLEM SET THREE -- ECON 3010

<u>1</u>. A monopolist can segment its market into two sub-markets, call them 1 & 2. TC = 200 + 5Q, with $Q = q_1 + q_2$. The demand in the sub-markets is:

 $P_1 = 20 - q_1/2 \& P_2 = 35 - q_2.$

- a) Find the profit-maximizing q_1 , q_2 , P_1 , P_2 , & π . Also find E_P^D in each sub-market at the profit-maximizing P & q.
- b) Which sub-market gets the lowest P? Why?
- <u>2</u>. In Figure 1, is π maximized when $q_A = 30$ & $q_B = 20$? Explain.
- <u>3</u>. Assume there is a monopoly with TFC = 0 & a constant MC. Draw the diagram for this. What are the profit-maximizing P, Q (= q), & π ? What is the DWL due to this monopoly? How does your answer change if competitive *rent seeking* occurs?
- <u>4</u>. To operate in a certain occupation, one must have a permit. No new permits have been issued, one can buy a permit from someone who has one (they are good for perpetuity), & the restriction on entry means each individual in the occupation expects π of \$25,000 per year. What will be the price of a permit (P_P) be if r = .05?
- <u>5</u>. Going to school now for 4 years will cost \$40,000 per year & will add to your earnings by \$20,000 per year. If r = 4% & you will work for 40 years, what is the net PV of this investment?
- <u>6</u>. Suppose a seller (for whom there are no competitors) has 2 types of buyers: *Premium & Discount*. The firm offers 2 goods for sale, A & B, with A of higher quality. The values buyers have for A & B are:

 $Value_{A}^{Premium}$ \$10, $Value_{B}^{Premium}$ = \$6, $Value_{A}^{Discount}$ \$7, & $Value_{B}^{Discount}$ = \$4

MC = AC =\$6 for A & \$3 for B. There are N_D Discount customers & N_P Premium customers.

- a) What are the profit-maximizing $P_A \& P_B$, & what is π ?
- b) Suppose the seller can downgrade B to product C, at a lower per unit cost of 50 c. Also, $Value_{C}^{Premium} =$ \$4 & $Value_{C}^{Discount} =$ \$3. What are the profit-maximizing P_A & P_C, & when would it pay the seller to switch from B to C?

Answers

<u>1</u>. a) & b) MC = \$5. TR₁ = $20q_1 - \frac{q_1^2}{2}$ & TR₂ = $35q_2 - q_2^2$. Thus MR₁ = $20 - q_1$ & MR₂ = $35 - 2q_2$. Set MR₁ = MC & MR₂ = MC: $20 - q_1 = 5$ & $35 - 2q_2 = 5$, so $q_1 = q_2 = 15$.

Insert q_1 into the demand for sub-market 1 & do likewise for sub-market 2 & get P_1 & P_2 : $P_1 = $12.5 \& P_2 = 20 .

 $\pi = P_1q_1 + P_2q_2 - 200 - 5(q_1 + q_2) =$ \$137.5.

 $E_p^D = \frac{1}{slope} \frac{P}{q}$, so $E_p^{D_1} = -2(12.5)/15 \cong -1.67$, & $E_p^{D_2} = -20/15 \cong -1.33$. The sub-market with the highest $|E_p^D|$ gets the lowest P---sub-market 1.

<u>2</u>. The relevant MC is MC for Q = 50, which is clearly > \$15. Thus, the π -maximizing Q < 50.

Given the firm sells Q = 50, it should sell more in sub-market A & less in sub-market B since, with $q_A = 30 \& q_B = 20$, $MR_A = \$15 \& MR_B = \10 . If the firm sells 1 more unit in sub-market A & 1 less unit in sub-market B, $\Delta TR = \$15 \cdot \$10 = \$5 \& \Delta TC = 0$, so $\Delta \pi = \$5$. The firm should continue to sell more in sub-market A & less in sub-market B until $MR_A = MR_B$, which $\Rightarrow q_A > 30$, $q_B < 20$, $\& \$10 < MR_A = MR_B < \15 .

<u>3</u>. Using **Figure Two**, with no rent seeking, $P = P_M$, $Q = Q_M$, & $\pi = PS = Y$ (TFC = 0), CS = X, & DWL = Z.

With competitive rent seeking, $P = P_M$, $Q = Q_M$, & $\pi = PS = 0$. All $\pi = PS$ is competed away. DWL = Z + some of Y. If all rent seeking involves resource use (& not bribes), then DWL = Z + Y. If <u>only</u> bribes are used, DWL = Z.

Page 3 of 4

- <u>4</u>. P_P = expected π since individuals will continue to bid up the price until they would just break even (earn zero π after buying a permit). Thus, $P_P = $25,000/.05 = $500,000$.
- <u>5</u>. We must find the PDV of a \$1 per year for 4 years (3.63), the PDV of a \$1 per year for 40 years (19.8), & $1/(1.04)^4 = .855$ since the individual receives the benefits starting 5 years (& not 1 year) from now.

Thus, PDV(benefits) = (.855)(19.8)(\$20,000) = \$338,580.

PDV(cost) = (3.63)(\$40,000) = \$145,200.

NPV = \$193,380.

<u>6</u>. a) With no competition, set P_B so $CS_B^{Discount} = 0$ (Discount buyers won't buy A given what optimal P_A will be). Thus, $P_B =$ \$4. At $P_B =$ \$4, $CS_B^{Premium} =$ \$2. Thus, set P_A so $CS_A^{Premium} =$ \$2, or

 $Value_A^{Premium} - P_A = $2, $10 - P_A = $2, or P_A = $8.$ Call profit π_1 . Now $\pi_1 = (4-3)N_D + (8-6)N_P = N_D + 2N_P$.

b) Now set P_C to take all CS from Discount buyers, so $P_C = \$3$. With $P_C = \$3$, $CS_C^{Premium} = \$1$. Thus, set P_A so $CS_A^{Premium} = \$1$, or $P_A = \$9$.

Now $\pi = \pi_2 = (3-2.5)N_D + (9-6)N_P = .5N_D + 3N_P$.

 $\pi_2 > \pi_1$ if $.5N_D + 3N_P > N_D + 2N_P$,

 $N_P > .5 N_D.$

If the # of Premium customers is more than $\frac{1}{2}$ the # of Discount customers, it pays to degrade from B to C. Selling C & not B to Discount buyers lowers π from each of these buyers by 50¢ (P \downarrow by \$1 but cost per unit \downarrow by 50¢). Profit per Premium buyer \uparrow by \$1 (P_A \uparrow \$1).