PROBLEM SET THREE -- MBA 5110

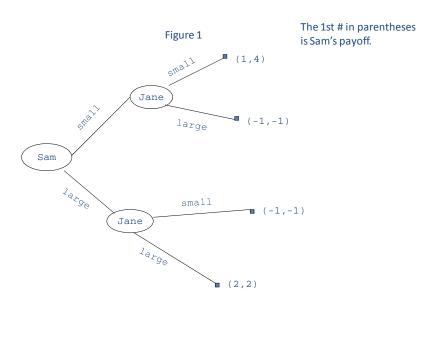
- <u>1</u>. Suppose a competitive firm has $C = \$1800 + 2q^2$ and P = \$100.
 - a) Find the firm's profit-maximizing q and its π .
 - b) If each firm has identical cost, is the market in long run equilibrium? If it is not, what will happen, & what will *P* equal in the long run? If $\pi < 0$ currently, *will* each firm operate?
- <u>2</u>. Suppose *FC* increases by the same amount for each firm in a competitive market (when firms have identical *C* functions & sell the same product). What happens to *P*, *q*, *Q*, & π in the short run & in the long run?
- <u>3</u>. In Table 1, is there a DS <u>e</u> in the game? If not, are there any Nash <u>e</u>? If there are more than one Nash <u>e</u>, how can the game have a solution?

Table 1		<u>Betty</u>	
		Left	Right
<u>Abe</u>	Тор	6, 3	3, 2
	Bottom	4, 7	5,8

 $\underline{4}$. In Table 2, is there a DS \underline{e} ?

Table 2	<u>Zeke</u>	
	Deny	Confess
<u>Babe</u> Deny	-1,-1	-10, 0
Confess	0,-10	-8,-8

5. Find the sub-game perfect Nash equilibrium in Figure 1. What happens if Jane insists she will always choose *small*?



<u>Answers</u>

- <u>1</u>. a) $MC = \frac{\partial C}{\partial q} = 4q$. A price taker has MR = P, so MR = \$100, & π is max when 100 = 4q, so q = 25. $\pi = R C = Pq C = 100(25) 1800 2(25)^2 = -\550 .
 - b) Since $\pi < 0$, this is not a long run \underline{e} (\underline{e} means equilibrium). Firms will operate in the short run because AVC = 2q = \$50 < P = \$100. In the long run, exit will occur, & fewer firms \Rightarrow market supply decreases, $Q \downarrow$, & $P \uparrow$. For the long run ($\pi = 0$), P must = AC, which (since P = MR = MC for a π -maximizing price taker) only happens if MC = AC, which occurs at the minimum point of AC. To find the minimum pt. of AC, set MC = AC:

4q = 1800/q + 2q, or $q^2 = 900$, so q = 30.

Insert 30 into *MC* or *AC* to find MC = AC =**\$120**---the *P* in long run <u>e</u>.

- 2. In the short run, C↑ (@ any q), so AC↑, & also AFC↑. Since ΔVC = 0, ΔMC = 0: C shifted up parallel to the old C. Since MC did not change, nor did the # of firms (in the short run), market supply did not change. Demand has not changed, so P & Q have not changed. Total output not changing does not prove q did not change (some <u>could</u> produce more & others could produce less if firms were not identical), but because MR = P for a price taker, & P & MC did not change), in fact Δq = 0 for each firm. With C↑, π↓, so, if we started in long run equilibrium (π = 0), we now have π < 0. Exit will occur in the long run, causing, P↑, Q↓, & q↑. Each firm can produce more with Q↓ because there are fewer firms.
- <u>3</u>. No DS for either player. 2 Nash <u>e</u>: {*top*, *left*} & {*bottom*, *right*}. Abe prefers {*top*, *left*} & Betty prefers {*bottom*, *right*}, so she tries to commit to *right*, & he tries to commit to *top*. If one succeeds, that tells us which Nash <u>e</u> we will see.
- $\underline{4}$. Both have DS: *confess*, so DS \underline{e} is {*confess*, *confess*}.
- <u>5</u>. {*large*, *large*} is SGP Nash <u>e</u>. If Jane announces a strategy of always going *small*, & he believes this, the Nash <u>e</u> is {*small*, *small*}. However, he should not believe this <u>unless</u> a) she has committed to *small*; or b) this is part of a repeated game, so it pays her to develop a reputation for going *small*.