PROBLEM SET FOUR -- MBA 5110

<u>1</u>. A monopolist can segment its market into two sub-markets, call them 1 & 2. C = \$200 + 5Q, with $Q = q_1 + q_2$. The demand in the sub-markets is:

 $P_1 = 20 - q_1/2 \& P_2 = 35 - q_2.$

- a) Find the profit-maximizing q_1 , q_2 , P_1 , P_2 , and find π , and E_p^D in each sub-market at the profit-maximizing P & q.
- b) Which sub-market gets the lowest P? Why?
- c) What happens if there is a capacity constraint $Q \le 20$?
- <u>2</u>. In Figure 1, is π maximized when $q_A = 30 \& q_B = 20$? Explain.

<u>3</u>. Stars have a value of \$60 & lemons have a value of \$30 to firms. Firms are unable to cheaply identify who is a star. Education, *y*, is cheaper for stars than for lemons because stars exert less effort than lemons. For a star, education costs y/2, &, for a lemon, education costs 2y/3. Let *y* be a continuous variable (that is, it can be a non-integer).

a) Show algebraically & explain the lowest & highest values for y for which signaling could occur.

- b) Assuming $y = y_{Riley}$, if the fraction of stars in the population is known to equal *s*, when will stars prefer signaling to pooling?
- <u>4</u>. Suppose utility = $U = 10\sqrt{I}$, where I = income. I = \$100 (probability = .25) or \$900 (probability = .75).
 - a) Find E(I) & E(U).
 - b) Find the risk premium (*RP*).

1

<u>Answers</u>

<u>1</u>. a) & b) MC = \$5. $TR_1 = 20q_1 - \frac{q_1^2}{2}$, & $TR_2 = 35q_2 - q_2^2$. Thus $MR_1 = 20 - q_1$ & $MR_2 = 35 - 2q_2$. Set $MR_1 = MC$ & $MR_2 = MC$: $20 - q_1 = 5$ & $35 - 2q_2 = 5$, so $q_1 = q_2 = 15$. Insert q_1 into the demand for sub-market 1 & do likewise for sub-market 2 & get P_1 & P_2 : $P_1 = \$12.5$ & $P_2 = \$20$. $\pi = P_1q_1 + P_2q_2 - 200 - 5(q_1 + q_2) = \137.5 . $E_p^D = \frac{1}{slope} \frac{P}{q}$, so $E_p^{D_1} = -2(12.5)/15 \cong -1.67$ & $E_p^{D_2} = -20/15 \cong -1.33$.

The sub-market with the highest $|E_P^D|$ gets the lowest *P*---sub-market 1. c) If $Q \le 20$, let $q_2 = 20 - q_1$ (or you could let $q_1 - 20 - q_2$) & set *MR*s equal:

 $20 - q_1 = 35 - 2(20 - q_1),$

 $25 = 3q_1$, 8.33 $\cong q_1$ & 11.67 $\cong q_2$ (unless the qs must be integers)

 $P_1 \cong$ \$15.83 & $P_2 \cong$ \$23.33; both $P_s \uparrow$ & both $q_s \downarrow$ due to the capacity constraint.

<u>2</u>. The relevant *MC* is *MC* for Q = 50, which is clearly > \$15. Thus, the π -maximizing Q < 50. Given the firm sells Q = 50, it should sell more in sub-market A & less in sub-market B since, with $q_A = 30 \& q_B = 20$, $MR_A = $15 \& MR_B = 10 . If the firm sells 1 more unit in sub-market A & 1 less unit in sub-market B, $\Delta R = $5 ($15-$10)$, $\& \Delta C = 0$, so $\Delta \pi = 5 . The firm should continue to sell more in sub-market A & less in sub-market B until $MR_A = MR_B$, which $\Rightarrow q_A > 30$, $q_B < 20$, & $$10 < MR_A = MR_B < 15 .

<u>3</u>. a) If employers believe those with $y \ge y^*$ are stars, then the conditions for a star to signal & a lemon to *not* mimic a star (given those who signal will be paid 60, & others will be paid 30) are:

$60 - y/2 \ge 30,$	
$60 \ge y.$	(1)
60 - 2y/3 < 30,	
45 < <i>y</i> .	(2)

 $\therefore 45 < y \leq 60.$

Thus, $45 < y^* \le 60$. Competition by firms for workers will drive $y^* \rightarrow 45 \equiv y_{Riley}$. Technically, y^* must be slightly greater than 45 for lemons *not* to mimic stars, but we can use $y^* = 45$.

b) If all set y = 0 (pooling), then the pooling wage is $W_{Pool} = 60s + 30(1-s) = 30(1+s)$. The payoff to a star from signaling = $60 - y_{Rilev}/2 = 37.5$. Stars prefer signaling to pooling if 37.5 > 30(1+s), or s < .25.

2

 $\underline{4}$. E(*I*) = [probability *I* = \$100][\$100] + [probability *I* = \$900][\$900] = .25[\$100] + .75[\$900] = **\$700**.

E(U) = [probability I = \$100][U(\$100)] + [probability I = \$900][U(\$900)] =

 $[.25][10\sqrt{100}] + [.75][10\sqrt{900}] = 25 + 225 = 250.$

To find *RP*, find the certain *I* that yields U = 250:

 $10\sqrt{I} = 250$

 $\sqrt{I} = 25$

 $I = 25^2 = 625.$

Thus *RP* = **\$75**.