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1 Introduction

In settings having uncertain binary outcomes, say ”win” or ”lose”, characterized by a

common and unknown probability of winning, agents choosing whether to take the gam-

ble will base their decision on their subjective assessment of the odds of winning, i.e., the

subjective expected utility of the gamble versus the alternative payoff from not taking the

gamble. A Bayesian agent will form an expected probability of winning from her prior and

information, if any, provided from her own past draws as well as those draws she may ob-

serve of other agents. Taking a draw when the outcome will be public knowledge is akin to

providing a public good—information. The Nash equilibrium in such public good settings

is zero provision unless the information is an external effect of an action taken for private

payoff in which case, the information will be undersupplied, although the provision level will

be positive.

The famous “Lloyd’s List” is illustrative of this setting. “Lloyd’s List” reported shipping

risk in 17th century England and remains to this day as one of the world’s oldest, continuously

running periodicals. As Bernstein (1996, pp. 89-90) describes:

In the absence of mass media, the coffee house emerged as the primary source of

news and rumor. . . . Samuel Pepys [Chief Secretary to the Admiralty] frequented

a coffee house to get news of the arrival of ships he was interested in; he deemed

news he received there to be more reliable than what he learned at his job at the

Admiralty. The coffee house that Edward Lloyd opened in 1687 near the Thames on

Tower Street was a favorite haunt of men from the ships that moored at London’s

docks. Lloyd had grown up under Oliver Cromwell and he had lived through plague,

fire, the Dutch invasion up the Thames in 1667, and the Glorious Revolution in

1688. He was a lot more than a skilled coffeehouse host. Recognizing the value

of his customer base and responding to the insistent demand for information, he

launched “Lloyd’s List” in 1696 and filled it with information on the arrivals and

departures of ships and intelligence conditions abroad and at sea. That information

was provided by a network of correspondents in major ports on the Continent and

in England.

The question is, how do such information spillovers affect agents’ decisions to take a risk,

thereby providing information to others engaged in similar activities? This paper reports the

results of an experimental test of the Nash equilibrium predictions in a binary gamble, the

“one-armed bandit” problem, with information spillovers. In the classic one-armed bandit
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problem a gambler faces a slot machine that pays a fixed return with an unknown probability.

In each period, the gambler may choose either to play the slot machine or not. Each time

the gambler plays he obtains additional information about the true probability that the

machine pays. In the game we consider, others can also observe the gamble and its outcome;

hence there is a pure informational externality. Traditionally, the gambler’s problem is

a tradeoff between experimentation and exploitation (Gittins, 1979).1 In the presence of

information spillovers, however, exploitation may be achieved through free-riding on others’

experimentation.

In the model we consider, the gambler can choose the risky option and/or observe one

other person choosing the risky option. When each player can observe the other’s actions

and results, information is a classic public good and the gambler has an incentive to free-ride

on the play of another.2 However, there may be other effects at work. In games with three or

more periods and publicly observable outcomes, Bolten and Harris (1999) show that players

face two opposing incentives: an incentive to free-ride on information provision by others and

an incentive to provide information in the current period to encourage information provision

by others in the future. Like Bolten and Harris (1999), we assume that both the choice of

and the result of a draw is perfectly observable. However, by restricting our attention to

a two-period setting, we eliminate the encouragement effect; information gathered in the

second period of the one-shot game cannot affect future play. This allows us to focus our

attention solely on the free-riding effect. In addition, unlike Gans et al. (2007), who focus

on how players form heuristics to simplify the repeated sampling problem in infinite time

bandit problems, the complexity of the problem our players face is lessened enough that

players can, in principle, explicitly solve for the best-response choices in each period.

We consider a two-player, two-period game in which players’ have commonly known

heterogeneous returns to the safe option. In each period, players simultaneously choose

between a risky option and a safe option. Choosing the safe option in the first period yields

1The bandit problem owes its origins to (Robbins, 1952). In their survey, Bergemann and Välimäki (2006) describe the
different faces that economists have put on the slot machine. Rothschild (1974) was the first to employ it, in the context of a
firm experimenting with prices to learn about market demand. Weitzman (1979) and Roberts and Weitzman (1981) applied the
bandit setup to the problem of investment in R&D. Jovanovic (1979) has used the bandit framework in a model of competitive
labor markets where matching is important. Bergemann and Välimäki (1996) and Felli and Harris (1996) use the bandit problem
to study the division of surplus under uncertainty. Bergemann and Hege (1998) and Bergemann and Hege (2005) apply the
bandit problem to corporate finance decisions of venture and innovation. Caplin and Leahy (1998) investigate informational
spillovers between firms regarding market demand. Sah (1991) and Lochner (2007) consider rational-cheater models of criminal
behavior where agent’s form beliefs about the enforcement regime based on their own experience (Lochner, 2007) or both their
own experience and that of others (Sah, 1991). In addition, Aghion et al. (1991), Bolten and Harris (1999), and Keller et al.
(2005) all investigate strategic experimentation in various bandit scenarios.

2The informational externality considered here differs from the literature concerning “herding” and “information cascades.”
These models assume players have private information regarding the true state of nature and observation of other players’
actions causes inference about that private information. As in Bolten and Harris (1999), our model allows players to form
beliefs about the true state of nature though observation of other players’ outcomes.
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a guaranteed return, but no information about the expected payoff to the risky option that

might inform the second period decision. Information is valuable because the probability

that the risky option pays out is unknown. The free-rider problem arises because if either

player chooses the risky action in the first period, the outcome of that choice is observable by

the other player. The public good is the expected benefit information provides in making the

subsequent decision. However, because the two players’ safe returns differ, their incentives for

free-riding also differ. When paired with a player whose safe return is relatively low, a player

can free-ride without expectation of cost to himself, as the other player is likely to choose

the risky option. However, when paired with a player whose safe return is relatively high,

free-riding is costly because it is likely that no information will be provided. Thus, players

of different safe return types have different incentives for free-riding. Since the expected

value of information provision is endogenously determined, and the game is dynamic, the

problem we consider is more subtle than the standard public good problem.3 Nonetheless,

our results are consistent with previous findings in that subjects free-ride less than predicted

when free-riding is a best response, and more than predicted when pulling the arm of the

bandit is a best response.

Because the game is played for two periods, we can identify whether players can correctly

deduce the dynamically optimal first period strategies and whether players’ second period

choices are consistent with Bayesian updating/reinforcement learning.4 In order for players

to choose the Nash best-response strategies in the first period of the game, they must satisfy

three increasingly sophisticated cognitive requirements: (i) players must be able to formulate

and update their beliefs using Bayes’ rule; (ii) players must be forward-looking, so that they

recognize the value of information; (iii) players must also be strategically rational in order

to recognize when the incentive to free ride is a dominant strategy and when it is not. In

order for a player to be strategically rational, it must be that information has value and

in order for information to be of value, it must be that the player updates his beliefs. If a

player fails to satisfy any of these requirements, his behavior will deviate from the theoretical

prediction.5

3There have been numerous experimental tests of Nash equilibrium predictions of both provision and of free-riding in a
public goods setting. Overwhelmingly the evidence suggests the people do not free-ride as often as theory predicts. Experiments
routinely find that subjects contribute to the public good despite it being a dominated strategy. Explanations for such behavior
have taken the form of either warm-glow (i.e. the satisfaction from giving) or altruism (i.e. interdependent utility functions).

4Charness and Levin (2005) tested Bayesian predictions against those of reinforcement learning. Their results suggest that
both heuristics are used, and when the predictions of the two are aligned, as in our experiment, people respond as expected.

5There is mixed evidence that people understand the value of information as modeled in the economic literature. Kraemer et
al. (2006) investigate the extent to which people rationally acquire costly information (i.e. understand the value of information).
There results suggest that people overvalue information (i.e. they purchase too much information). However, earlier bandit
experiments provide a large body of evidence that suggests the people undervalue information (McKelvey and Page, 1990;
Meyer and Shi, 1995; Banks et al., 1997; Anderson, 2001; Gans et al., 2007).
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Choices made by players in the second period of the game allow us to identify whether

or not players utilize Bayes’ rule or whether they follow some other heuristic. While there

is considerable evidence that players are not “perfect Bayesians”—there is evidence people

place too little weight on prior beliefs and too much weight on new information—the exper-

iment is designed to afford players the best shot at being “good Bayesians.” For example,

when there are a small number of possible data generating processes, players are able to form

their posterior beliefs on heuristics such as whether the sample is “representative” of one

of the possibilities (e.g. (El-Gamal and Grether, 1995; Grether, 1980, 1992; Kahneman and

Tversky, 1972, 1973; Tversky and Kahneman, 1971, 1973). Because we implicitly allow for a

very large number of possible data generating processes, we minimize the influence of prior

beliefs so that a heuristic such as representativeness has little explanatory power. Further-

more, we employ a very simple case of Bayesian updating, a binomial sample, in which the

sample proportion asymptotically approaches the no information prior Bayesian estimate.

As such, we find evidence that when players make an error in the first period of play, they are

more likely to repeat that error in the second round of play. Thus, like Charness and Levin

(2005), we find that players who make errors are likely to ignore data that is in dissonance

with their beliefs.6 However, players for whom the cost of errors is high are less likely to

commit errors. Indeed, when only one player pulls the arm, it is the the player predicted to

do so at least 96% of the time. Therefore, our results suggest that players are somewhat my-

opic, yet are forward-looking “enough” to behave strategically. Consistent with results from

public goods experiments, we find players free-ride too much when they should not, and too

little when they should. While error rates indicate that players undervalue information, they

respond to information in a manner consistent with Bayesian updating/reinforcement learn-

ing, suggesting they place some value on information. Deviations from Bayesian predictions

appear to be attributable, in part, to salience and cognitive dissonance.

2 Information Spillovers in a Bandit Game

Two risk neutral player’s, i = 1, 2, play for two periods, t = 0, 1. In each period the

players simultaneously choose whether or not to take the safe option, paying Si, or to take

the risky option, a sample of n Bernoulli trials, where each trial pays R for a success and

6While previous results suggest people place too little weight on priors, our cognitive dissonance result suggests the contrary.
We believe there is plausible explanation for the apparent discrepancy. Previous experiments testing Bayes rule versus other
heuristics explicitly induced prior beliefs, provided new information, and then ask the subject to make a guess about the source
of the information. However, players do not have to use information in our experiment (they can simply choose the safe option
in the second period of the game). Indeed, some players never choose the risky option in the second period of certain treatments
(see footnote 15). This could explain why subjects seem to ignore information in our experiment.
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zero for a failure. The results of the period one draws, if any, become public information

prior to period two. The payoffs to each player are the undiscounted sum of first and second

period returns.

2.1 Equilibrium in the Two-Person, two-period One-Armed Bandit Game

The probability of a success in each draw from the risky option is θ, where 0 < θ < 1,

but θ is unknown to the players. Since the probability of success is unknown, players must

make their decisions in each period based upon their subjective beliefs. Let ξ(θ) denote the

distribution of each player’s prior beliefs about θ. Assume that ξ(θ) is a beta distribution

with parameters α and β, so that ξ(θ) = θα−1(1− θ)β−1 (DeGroot, 1970, p. 40). A draw of

N samples from the risky option results in a sample of outcomes, x1, . . . , xN , each of which is

distributed as a Bernoulli random variable, so that the likelihood we observe X successes in

N trials is given by fN(x1, . . . , xN |θ) = θX(1− θ)N−X , where X =
∑N

i=1 xi is the number of

observed successes in N trials. As each player may draw n samples, N ∈ {0, n, 2n} denotes

the number of draws in the first period. Zero draws occur when neither player selects the

risky choice; n draws occur when one of the players selects the risky choice and the other

the safe choice; and 2n draws occur when both players select the risky choice. The posterior

distribution of beliefs is given by ξ(θ|x1, . . . , xN) = θα+X−1(1− θ)β+N−X−1, which is a beta

distribution with parameters α + X and β + N − X (DeGroot, 1970, p. 160, Theorem 1).

Thus, the information available to players at the beginning of period two is the number of

draws, N , and the number of successes, X. Let I = {N, X} denote the information set. The

possible information sets after one period are I0 = {∅}, I1(X) = {n, X}, I2(X) = {2n, X},
where the subscript on the information set represents the number of players who have chosen

the risky option. Let pt = E[θ|I] denote each player’s common expectation of θ in period

t, given the information, I, available at that time. A beta distribution with parameters α

and β has expectation (α + X)/(α + β + N). Thus p0 = α
α+β

and p1(I) = α+X
α+β+N

. Since

players are completely uninformed about the value of θ, it is natural to assume that each

player has uninformative prior beliefs about the probability of success. Therefore, we assume

that α = β = 1, which implies that ξ(θ) is a uniform distribution over the interval zero to

one. Hence, the expectation of the uninformed prior is p0 = 1
2

and the expectation of the

posterior distribution is p1 = 1+X
2+N

.

Given players are assumed to be risk neutral, the current period subjective expected

utility (EUit) to each player i from choosing the risky option is simply the expected value

from the risky option, which is given by
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Player j
Safe Risky

Player i

Safe
Sj + max

[
Sj , Rnp1(I0)

]
Rnp0 +

∑n
X=0 fn(X|I0)max

[
Sj , Rnp1

(
I1(X)

)]
Si + max

[
Si, Rnp1(I0)

]
Si +

∑n
X=0 fn(X|I0)max

[
Si, Rnp1

(
I1(X)

)]

Risky
Sj +

∑n
X=0 fn(X|I0)max

[
Sj , Rnp1

(
I1(X)

)]
Rnp0 +

∑2n
X=0 f2n(X|I0)max

[
Sj , Rnp1

(
I2(X)

)]
Rnp0 +

∑n
X=0 fn(X|I0)max

[
Sj , Rnp1

(
I1(X)

)]
Rnp0 +

∑2n
X=0 f2n(X|I0)max

[
Si, Rnp1

(
I2(X)

)]

Figure 1: Normal Form of the First P eriod Game

EUit = R
n∑

X=0

fn(X|I)X = nRpt(I). (1)

In the Nash equilibrium, each player solves the dynamic game using backward induction.

Player i’s decision rule in the second period is to choose the risky option if, and only if:

nRp1(I) > Si. (2)

Thus, a risk-neutral player chooses the risky option if, and only if, the return to the safe op-

tion, Si, is less than the expected return to the risky option, nRp1(I), given the expectation

about θ given by the posterior distribution as informed by the information set I. Therefore,

we can write the second period expected payoffs as max
[
Si, Rnp1(I)

]
. For a Bayesian ex-

pected utility player, there is a critical number of successful draws, XSi
N , that depends upon

the opportunity cost to the player and the number of draws observed, such that if X > XSi
N

the player is induced to choose the risky option. From the posterior expectations, those

values satisfy XSi
N = Si(2+N)

nR
− 1 for N ∈ {n, 2n}.

The game in period one is complicated by both strategic and information concerns. The

normal form of the first period game is depicted in Figure 1. Player j’s expected payoffs are

depicted in the upper-right of each cell and player i’s expected payoffs are depicted in the

lower left of each cell. When neither player chooses the risky option, the second period payoffs

are simply max[Si, Rnp0] , since no draws from the risky option have been observed. When

one or both of the players chooses the risky option, however, the terms in summation give

the decision rule for each possible information set weighted by the probability of observing

that information set given the prior beliefs.
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From Figure 1, we may derive the decision rule for player i to choose the risky option

when player j has chosen the safe option. That rule is to choose the risky option if, and only

if the following inequality holds:

Rnp0 − Si +
n∑

X=0

fn(X|I0)max
[
Si, Rnp1

(
I1(X)

)]
−max

[
Si, Rnp1(I0)

]
> 0. (3)

The difference in the first two terms in (3) is the expected opportunity cost of obtaining

information in the first period. This equals the expected return from choosing the risky

option less the forgone return to choosing the safe option. The difference in the last two

terms in (3) is the expected value of the message service (Hirshleifer and Riley, 1992, at

p. 180). It is well known that for any given return to the safe option relative to the risky

option, the expected value of the message service is non-negative. This can be shown by

writing the expected value of the message service as

EV OISi
(n) =

n∑
X=0

fn(X|I0)
{

max
[
Si, Rnp1(I1(X))

]
−max

[
Si, Rnp1(I0)

]}
≥ 0. (4)

Information has value because it may change the decision in the second period. The

expected value is the difference between the weighted average of expected returns from

the optimal decision, max
[
Si, Rnp1

(
I1(X)

)]
, weighted by the expected probability of the

particular information signal, fn(X|I0), and the expected return from the optimal decision in

the absence of information, max
[
Si, Rnp1(I0)

]
. This difference is greater than zero whenever

the player chooses an action that differs from what he would have chosen absent information.

Since the opportunity cost of obtaining information is positive for all values of Si > Rnp1(I0),

and negative for Si < Rnp1(I0), it is a best-response for a player with a safe return Si ≤
Rnp1(I0) to choose the risky option whenever the other player chooses the safe option.

In contrast, if player j has chosen the risky choice in period one, player i’s decision is no

longer a comparison between zero information and a positive amount of information. Rather,

player i’s choice is now between two message services, one in which a n draws are provided

and one in which 2n draws are provided. When player j has chosen the risky option, player

i’s decision rule is to choose the risky option if, and only if,

Rnp0 −Si +
2n∑

X=0

f2n(X|I0)max
[
Si, Rnp1

(
I2(X)

)]
−

n∑
X=0

fn(X|I0)max
[
Si, Rnp1

(
I1(X)

)]
> 0.

(5)
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The difference in the first two terms in (5) is the expected opportunity cost of obtaining the

message service that provides 2n draws in the first period rather than the message service

that provides only n draws, measured in the safe return foregone. This cost is identical to

the case where the other player does not make the risky choice. The expected value of the

message service that provides 2n draws relative to the message service that provides n draws

is captured by the difference between the two summations in (5). This equals the weighted

average of expected returns the player expects to receive from the second period optimal

decision, given that both players have chosen the risky option, less the weighted average of

expected returns the player expects to receive from the second period optimal decision, when

only the other player has chosen the risky option. We now show that the net expected value

of the message service that provides 2n draws relative to the message service that provides

n draws is negative for some players.

2.2 Nash Equilibrium Illustrated when n = 1

To gain some intuition about how players are predicted to play, consider the case where

n = 1. Suppose that player j has chosen the safe option. If player i chooses the safe option,

his expected return is

EUi(Safe|Safe) = Si + max
[
Si,

1
2
R

]
, (6)

and if player i chooses the risky option, his expected return is

EUi(Risky|Safe) = 1
2
R + 1

2
max

[
Si,

1
3
R

]
+ 1

2
max

[
Si,

2
3
R

]
, (7)

where the fractions outside the max functions are the probability of the information set

given the uninformed prior, and the fractions inside the max functions are the posterior

expectations of a success. Equating the right-hand sides of (6) and (7) and solving for the

safe return value, S̄, such that for Si < S̄, the expected return from choosing the risky option

exceeds the expected return from the safe option, yields S̄ = 5
9
R. For all players for whom

Si < 5
9
R, the best-response to the other player choosing the safe option is to choose the risky

option, and for all players for whom Si ≥ 5
9
R, the best response to player j choosing the safe

option is to choose the safe option.

Suppose instead that player j has chosen the risky option. Then the expected return to

player i of choosing the safe option is

EUi(Safe|Risky) = Si + 1
2
max

[
Si,

1
3
R

]
+ 1

2
max

[
Si,

2
3
R

]
. (8)
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In contrast, if player i chooses the risky option, his expected return is

EUi(Risky|Risky) = 1
2
R + 1

4
max

[
Si,

1
4
R

]
+ 1

2
max

[
Si,

1
2
R

]
+ 1

4
max

[
Si,

3
4
R

]
. (9)

Solving for the value of the safe return, S, such that for Si ≤ S the expected return from

choosing the risky option exceeds the expected return from choosing the safe option, yields

S = 29
60

R. Thus, all players for whom S < 29
60

R, the best-response to the other player choosing

the risky option is to also choose the risky option. This also means that all players for whom

Si ≥ 29
60

R, the best response to player j choosing the risky option is to choose the safe option.

Therefore, players whose safe return is less than S have a dominant strategy of choosing

the risky option and players whose safe return is greater than S̄ have a dominant strategy

of choosing the safe option. Players for whom S < Si < S̄, however, have a conditional

best-response; to choose risky if the other player chooses safe and to choose safe if the other

player chooses risky. This is demonstrated by plotting the expected second period return

as a function of the value of Si relative to R as shown in Figure 2 (where the vertical

scale has been truncated). The thick solid chord with a single kink at Si = 1
2
R is the

expected return of the second period optimal decision when neither player has chosen the

risky option in the first period (N = 0). The dashed chord with kinks at Si = 1
3
R and

Si = 2
3
R is the expected return of the second period optimal decision when one player has

chosen the risky option in the first period (N = 1). The thin solid chord with kinks at

Si = 1
4
R, Si = 1

2
R, and Si = 3

4
R is the expected return of the second period optimal decision

when both players have chosen the risky option in the first period (N = 2). The vertical

distance between the thin solid chord and the thick solid chord is the expected value of

the message service when one player has chosen the risky option in the first period. The

vertical distance between the dashed chord and the thick solid chord is the expected value

of the message service when both players have chosen the risky option in the first period.

Between S and S̄, the expected value of the message service associated with two draws is

less than the expected value of the message service associated with one draw. This difference

is maximized at Si = 1
2
R. The two horizontal dotted chords show the expected value of the

message services for the player for whom Si = 1
2
R, for the cases of one draw and two draws,

respectively. For the player for whom Si = 1
2
R, the expected value of the message service

associated with one draw is equal to EV OIR
2

(1) = 1
12

; the expected value of the message

service associated with two draws is equal to EV OIR
2

(2) = 1
16

. The difference for this player

is EV OIR
2

(2)− EV OIR
2

(1) = 1
16
− 1

12
= − 1

48
.
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Si 

EUi2 

 N = 0 Draws 
 N = 1 Draw 
 N = 2 Draws 

1
2 R  

1
4 R  

1
3 R S 1

2 R 2
3 R 3

4 RS

1
2

(2)REVOI
1
2

(1)REVOI

Figure 2: Expected Value of Message Services with n Draws and 2n Draws, n = 1.

With one draw, relative to his uninformative prior of p0 = 1
2
, the player’s posterior

expectation moves to either p1 = 1
3

with probability 1
2

or to p1 = 2
3

with probability 1
2
.

With two draws, given his uninformative prior, the player obtains a posterior expectation of

p1 = 1
4

with probability 1
4
, a posterior expectation of p1 = 3

4
with probability 1

4
, or a posterior

expectation of p1 = 1
2

with probability 1
2
. Therefore, with two draws, it is equally likely that

the information from the two draws will cancel each other out, in which case the player is

left with no more information than from his prior, of that the two draws will reinforce each

other, in which case the player is more informed than with his prior. In contrast, with one

draw, the player’s posterior expectation always differs from his prior expectation. A risk

neutral Bayesian player only cares about the expected value of the lottery relative to the

safe return. Thus, for a player for whom S < Si < S̄, taking two draws is expected to be

less valuable in making his subsequent second period decision than is taking only one draw.

2.3 Solution to the Game Used in the Experiment

In the experiment the payoff to a successful draw is R = $5, and choosing the risky option

gives the player n = 3 draws. There are three types of players, indexed by their safe returns:

SL = $4, SM = $8, and SH = $12. Thus we can obtain exact values for the expectations,

assuming a no information prior, depending upon the value of Si each player faces. In the

experiment, SL = $4 and SH = $12 players are always paired with SM = $8 player. Figure 3

displays the normal form of the first period games used in the experiment. The numbers in
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Si = $4 Si = $12
Safe Risky Safe Risky

Si = $8

Safe 128
8

92
8

4320
256

121
8 Safe 128

8
48
2

4320
256

39
2

Risky 131
8

5952
512

4149
256

7709
512 Risky 131

8
12288
512

4149
256

9993
512

(a) {$4, $8} Game (b) {$12, $8} Game

Figure 3: First Period Games Expected Utilities

Figure 3 represent the expected (undiscounted) present value stream of payoffs from playing

a particular strategy, given optimal second period behavior and an uninformative prior. The

SM = $8 player’s payoffs are the first number in each cell and best-responses are in bold-face

font. There is one pure-strategy Nash equilibrium in each of the two games in Figure 3. In

the Nash equilibrium for the {$4, $8} game, the SM = $8 player chooses the safe option and

the SL = $4 player chooses the risky option. In the Nash equilibrium for the {$12, $8} game,

however, the SM = $8 player chooses the risky option and the SH = $12 player chooses the

safe option.

Observe also that for players of types SH = $12 and SL = $4 the cost of decision error

is much higher relative to the cost of decision error for the SM = $8 player type (Smith and

Walker, 1993). For any player for whom S < Si < S̄, the cost of decision error is relatively

low, since the expected value of the choosing the risky option is very close to the return from

the safe option. Unfortunately, this is also the type of player who is the most interesting

because he does not have a dominant strategy. This feature of the problem is dictated by

the underlying the one-armed bandit game.7

3 Experimental Design and Hypotheses

The experiment implemented the two period game described above. Each subject par-

ticipated in twenty rounds of play in a with-in subjects design. In each period of each

round, subjects chose between a guaranteed amount, which was predetermined to be one

of Si = {$4, $8, $12}, and a lottery with an unknown probability distribution. The lottery

7The small difference in the payoff space implies that we are more likely to err in the direction of rejecting Nash equilibrium
predictions.
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was framed as three draws with replacement from an urn containing 100 balls, composed of

an unknown proportion θ of red balls and proportion 1 − θ of blue balls, where 0 ≤ θ ≤ 1.

Each red ball paid $5 and each blue ball paid $0. Subjects were informed that θ was held

constant in both periods of a round of the experiment; but was varied across rounds. Thus,

information obtained in the first period could inform the decision the player was to make in

the second period; however, information had no value from one round of the experiment to

the next.

Subjects were randomly assigned to one of the safe payoff values in each round of a

session. The model predicts that the Si = $8 player type will systematically vary his behavior

depending upon which type of player he is paired with, Si = $4 or Si = $12 player types.

Thus, an Si = $8 player type is always paired with either an Si = $4 player type or an

Si = $12 player type. Therefore, in any round of play 25% of subjects were type Si = $4,

50% were type Si = $8, and 25% were type Si = $12. The experimental design thus yields

four treatments consisting of the combinations of a subject’s own type and the type of the

other subject {Si, Sj} = {{$4, $8}, {$8, $4}, {$8, $12}, {$12, $8}}. Each treatment pair was

assigned a probability of success from a distribution with mean 0.5 in accordance with the

non-informative prior. The player types, player pairing, and underlying probability of success

were drawn randomly in each round of play, and remained fixed for that round. Treatments

were drawn with replacement. Player pairing and the underlying probability of success in

each round were drawn without replacement. Subjects never learned the identity of their

partner in any round, but in each round they knew their own and their partner’s type.

Three sessions of the experiment were run and, in each, instructions were read aloud as

well as presented on computer screens to ensure common knowledge.8 In addition, partici-

pants were required to pass a basic test of statistical skills in order to reduce misunderstand-

ing.9 A total of 52 players participated (18 in session 1, 20 in session 2, and 14 in session

3). Since each player made choices in each of two periods of twenty rounds of play, there are

2080 total observed risky/safe choices. The experiments were conducted at the University

of Calgary Behavioral and Experimental Economics Laboratory (CBEEL). The participant

pool is composed of volunteer students at the university. Participants were recruited by email

via the lab’s Online Recruitment System for Experimental Economics (ORSEE) (Greiner,

2004). The experiment was programmed and conducted with the software Z-Tree (Fis-

chbacher, 2007). Subjects were paid on the basis of the outcome of one randomly chosen

round. Experimental sessions lasted approximately 90 minutes, and participant earnings

8Screen images are available upon request from the authors.
9Participants could not proceed until they answered all questions correctly. The questions are provided in the screen images.
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averaged $23, of which $5 was a show-up fee.

3.1 Hypotheses Regarding First Period Choices

We present the equilibrium predictions for first period choices that are implied by the

Bayesian behavior, and derive hypotheses about the deviations from those predictions. Let

∆EU1
ijt denote the latent undiscounted net gain in the sum of first and second period sub-

jective expected utility to a player of type i playing against a player of type j from choosing

the risky option in round t. Then the probability that the subject chooses the risky option

in the first period is given by

Pr(∆EU1
ijt > 0) = β1

ijDij + β1
t Rt + β1

PPi + ε1
ijt, (10)

where Dij is a vector of treatment dummy variables where i denotes a player’s own payoff

from the safe choice and j denotes the partner’s payoff from the safe choice, Rt is a vector

of round fixed-effects, Pi is a vector of player fixed-effects, and ε1
ijt is the unobserved error.10

The β1
ij parameters correspond to the (conditional) mean probabilities that each type

chooses the risky option in the first period. Under the null hypothesis that the round and

subject effects are zero, these correspond to the unconditional mean probabilities that each

type chooses the risky option in period one. The Nash equilibrium to the game yields a set

of behavioral predictions that strictly follow the theory. These are that first period behavior

satisfies β1
4,8 = β1

8,12 = 1 and β1
8,4 = β1

8,12 = 0. If players error, their errors are necessarily one

sided: those players who should have played the risky (safe) choice with probability one can

only err by choosing the risky (safe) choice with probability less than one. The following set

of behavioral hypotheses takes subject error into account:

Hypothesis 1. β1
4,8 > β1

12,8 : players in treatment {$4, $8} should choose the risky option

more often than players in treatment {$12, $8}, in the first period.

Hypothesis 2. β1
8,12 > β1

8,4 : players in treatment {$8, $12} should choose the risky option

more often than players in treatment {$8, $4}, in the first period.

To achieve the Nash predictions, players must satisfy three requirements: (i) they must

be Bayesian, (ii) they must recognize the value of information, and (iii) they must behave

strategically. Let ε1
ij denote the average error by treatment type. Player error can be caused

by several factors. Thus, deviations from theoretical predictions in the first period could be

10One of the strengths of a within-subjects design is that the subject fixed-effects should be uncorrelated with the treatments,
allowing for a cleaner test of treatment effects.
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due to myopic behavior (undervaluation of information) or a failure to be strategically ratio-

nal. The two types of violations, however, do not produce symmetric errors, as hypotheses

3 and 4 relate:

Hypothesis 3. ε1
8,12 ≡ 1 − β1

8,12 > β1
8,4 − 0 ≡ ε1

8,4 : in the first period, myopic players in

treatment {$8, $12} should exhibit a higher error rate by choosing the safe option more often

than players in treatment {$8, $4} choose the risky option.

Hypothesis 4. ε1
8,12 ≡ 1 − β1

8,12 < β1
8,4 − 0 ≡ ε1

8,4 : in the first period, myopic players in

treatment {$8, $12} should exhibit a lower error rate by choosing the safe option less often

than players in treatment {$8, $4} choose the risky option.

If players are myopic, they will choose the guaranteed amount in both periods of the

{$12, $8}, {$8, $12}, and {$8, $4} treatments. Thus, we expect myopia to produce a higher

error rate in the first period of the {$8, $12} treatment relative to the {$8, $4} treatment.11

On the other hand, if players understand the expected value of information but fail to

recognize when the other player will provide it, they should choose the risky option in the first

period of the {$8, $12} and {$8, $4} treatments. These players recognize the expected value

of information but fail to be strategically rational. Thus, we expect strategic irrationality

to produce a higher error rate in the {$8, $4} treatment than in the {$8, $12} treatment.12

However, it is clear that Hypotheses 3 and 4 are mutually exclusive: Hypothesis 3 implies

1 < β1
8,12 + β1

8,4 while Hypothesis 4 implies that 1 > β1
8,12 + β1

8,4.

Another potential cause of player error is lack of payoff salience (Smith and Walker,

1993). This is an issue for any experimental design — a failure to implement a basic precept

of experimental methodology (Smith, 1982). By virtue of our design, players in treatments

{$4, $8} and {$12, $8} each have much more to gain than a player of type {$8, $4} and

{$8, $12} from making the correct choice, hence their decision errors should be smaller.13

The mean decision error for players in treatment {$4, $8} is ε1
4,8 = 1 − β1

4,8 and the mean

decision error for players in treatment {$8, $12} is ε1
8,12 = 1 − β1

8,12. Thus, salience implies

that 1−β1
4,8 < 1−β1

8,12, or that β1
8,12 < β1

4,8. Similarly, while players in treatments {$12, $8}
and {$8, $4} are each expected to choose the safe option, the salience is higher for a player

in treatment {$12, $8}, thus we expect that ε1
12,8 = β1

12,8 − 0 < β1
8,4 − 0 = ε1

8,4. The design

11Myopia causes a bias towards the safe option, which simultaneously raises the error rate in the {$8, $12} treatment and
lowers the error rate in the {$8, $4} treatment.

12Strategic irrationality causes a bias toward choosing the risky option, which simultaneously raises the error rate in the
{$8, $4} treatment and lowers the error rate in the {$8, $12} treatment.

13The percentage difference in payoffs between choosing the best response and the alternate strategy in Figure 3 is at most
4% for a player in treatments {$8, $4} and {$8, $12}, while the percentage difference between choosing the best response and
the alternate strategy is at least 23% for a player in treatment {$12, $8} and at least 29% for a player in treatment {$4, $8}.
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allows us to investigate the contribution of salience to decision errors. Specifically:

Hypothesis 5. ε1
4,8 ≡ 1− β1

4,8 < 1− β1
8,12 ≡ ε1

8,12; salience implies that in period one players

in treatment {$4, $8} should have lower errors rates than players in treatment {$8, $12}.

Hypothesis 6. ε1
12,8 ≡ β1

12,8 < β1
8,4 ≡ ε1

8,4; salience implies that in period one players in

treatment {$12, $8} should have lower errors rates than players in treatment {$8, $4}.

3.2 Hypotheses Regarding Second Period Choices

The Bayesian predictions are that players choose the risky option in the second period

when the inequality in (4) is satisfied, i.e., that a player of type Si chooses the risky option

whenever X ≥ XSi
N . When N = 3, X$4

3 = 1, X$8
3 = 2, and X$12

3 = 3; and when N = 6,

X$4
6 = 2, X$8

6 = 4, and X$12
6 = 6. This implies that the second period choice does not

depend upon the first period choice, except in so far as that choice determines the number

of draws. It also implies that what matters is whether or not X is greater or less than XSi
N ;

it does not matter by how much the two numbers differ.

While Bayesian updating implies that all that is important is the sign of X−XSi
N , salience

implies that the larger is the difference between X and XSi
N , the larger will be the difference in

expected utility. This is measured by including a variable equal to the difference X −XSi
N in

a regression equation explaining second period choices. Salience implies that the coefficient

on this variable will be positive in sign.

The first period choice made by a player could matter if the player suffers cognitive

dissonance (Akerlof and Dickens, 1982). Cognitive dissonance is a psychological condition

induced when an individual is confronted with information that contradicts their prior belief.

This results in placing too much weight on prior beliefs in the updating process. In our

experiment, cognitive dissonance implies that players will be more likely to repeat their first

period choices regardless of the outcome of that choice.14 Thus, the player is more likely

to choose the risky option in period two if she chose the risky option in period one and to

choose the safe option in period two if she chose the safe option in period one. In a regression

model in which second period choices are coded as a one if the risky option is chosen and

a zero otherwise, the effect of cognitive dissonance can be analyzed by including a dummy

variable that is equal to one when the first period choice was the risky option. Cognitive

dissonance implies that this coefficient will be positive in sign.
14We do not explicitly induce priors in the experiment, in order to maximize the value of information in the first period of

the game. However, the result is an inability to distinguish cognitive dissonance from strong prior beliefs. That is, subjects
may indeed update their beliefs in accordance with the Bayesian process, yet begin with such strong priors that they appear to
be ignoring the information provided in the first period of the game.
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Let ∆EU2
ijt denote the latent net gain in expected utility of a player of type i playing

against a player of type j in period two of round t. Then the preceding discussion implies

that we may write a regression model of the probability that a player chooses the risky option

in period two as

Pr(∆EU2
ijt > 0) = β2

ijADXDij + β2
ijB(X−XSi

N)Dij + β2
CDD1 + β2

t Rt + β2
PPi + ε2

ijt, (11)

where DX is a dummy variable equal to one if X > XSi
N and equal to zero otherwise; Dij is

a dummy variable equal to one if the treatment is type {$i, $j}; X−XSi
N is a vector of the

differences between the number of observed successes and the critical number of successes

to induce the risky choice, which is set equal to zero when neither player chooses the risky

choice in period one; D1 is a dummy variable equal to one if subject i chose the risky choice

in the first period; and as in period one, Rt is a vector of round fixed-effects and Pi is a

vector of subject fixed-effects. The β2
k are parameters to be estimated.

The Bayesian predictions imply that β2
ijA = 1, and that β2

ijB = β2
CD = βt = βP = 0. Since

player error can only lower the proportion of players who satisfy these strict hypotheses, we

state the Bayesian hypotheses as follows:

Hypothesis 7. β2
ijA ≥ 0 : Players apply Bayes’ rule when making second period decisions.

The alternative hypothesis is that players are less likely to choose the risky option in the

second period when they have observed the critical proportion of successes.

The salience hypothesis is:

Hypothesis 8. β2
ijB ≥ 0 : Salience increases the probability that a subject chooses the risky

option. The alternative hypothesis is that β2
4,8B < 0, β2

8,4B < 0, β2
8,12B < 0 and β2

12,8B < 0, or

that salience has no effect upon second period choices.

The cognitive dissonance hypothesis is:

Hypothesis 9. β2
CD ≥ 0 : Choosing the risky option in period one increases the likelihood of

choosing the risky option in period two. The alternative hypothesis is that β2
CD < 0, cognitive

dissonance has no effect upon second period choices.

Finally, players in the {$8, $4} treatment should be indistinguishable from players in the

{$8, $12} treatment once the second period arrives, since their incentives are identical at

that period. This implies the following hypothesis:
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Hypothesis 10. β8,4A = β8,12A and β8,4B = β8,12B : Whether a player is in the {$8, $4} or

{$8, $12} treatment does not matter in the second period. The alternative hypothesis is that

one or more of the equalities does not hold.

4 Analysis of Results

4.1 Analysis of First Period Choices

We begin by examining frequency distributions of first period choices by treatment.

Figure 4 depicts the proportion of players choosing the lottery and Table 1 presents the

error rates conditioned only by treatment.

Table 1: First Period Error Rates by Treatment

Treatment {$4, $8} {$8, $4} {$8, $12} {$12, $8}
Error 1− β4,8 β8,4 − 0 1− β8,12 β12,8

Percentage Errors 5.3% 22.14% 53.33% 2.08%

In Figure 4, the histogram at left depicts the entire sample of first period choices (1040

observations) and the histogram at right depicts the distribution when only one player in

a pair chose the lottery (644 observations). The panel at left in Figure 4 demonstrates

that players responded to incentives: 95% of players in the {$4, $8} treatment chose the

risky option, while only 2% of those in the {$12, $8} treatment chose the risky option. This

pattern of behavior is consistent with Hypothesis 1. Furthermore, when we restrict our

attention to cases where only one player in a pair chose the risky option (i.e. the right

panel in Figure 4), we see that the largest error rate is less than 4%. Thus, almost all

deviations from theoretical predictions in period one are due to choices made by those in the

{$8, $4} and {$8, $12} treatments. 22% of decisions in the {$8, $4} treatment chose the risky

option, even though the risky option is predicted to never be chosen in this treatment, and

47% of decisions in the {$8, $12} treatment chose the risky option, even though the risky

option is predicted to always be chosen in this treatment. While these frequencies differ

from Nash equilibrium predictions, they differ from each other in the direction consistent

with Hypothesis 2.

Choosing the lottery 47% of the time in the {$8, $12} setting may appear to be the

result of random choices. However, random choice would also generate a frequency of 50%

of players choosing the risky option in the {$8, $4} treatment. The lower error rate in the
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 Figure 4: Frequency Distribution of First Period Risky Choices by Treatment.

{$8, $4} treatment than in the {$8, $12} treatment is inconsistent with Hypothesis 4, that

players’ behavior is strategically irrational. However, this is consistent with Hypothesis 3,

that players are behaving myopically. Myopia biases behavior toward the safe choice as

it lowers the value of information, thereby lowering the return from the risky choice. But

if players were behaving entirely myopically we would not expect a difference between the

{$8, $4} treatment and the {$8, $12} treatment; both would produce a frequency of 0% risky

choices. Thus, it appears that players undervalued information, yet valued it “enough” to

behave strategically.

While aggregate behavior appears to be consistent with Nash equilibrium predictions,

it is important to determine whether the aggregate behavior is the result of many players

deviating some of the time or a few deviating much of the time. We construct the error

rate for each player in each treatment, defined to be the fraction of suboptimal choices. The

frequency distribution of player first period error rates across treatments are depicted in

Figure 5. In 3 out of 4 treatments the modal error rate is 0%. However, in the {$8, $12}
treatment the modal error rate is 100%. Thus, in most treatments some players made some

suboptimal choices, however, in the {$8, $12} treatment there was a dramatically higher rate

of players deviating frequently (e.g. 53% of decisions). Again, this pattern of error rates is

consistent with undervaluation of information and lack of salience.

Since players repeated the game over twenty decision rounds, it is worthwhile to inves-

tigate the extent to which there are time trends (e.g. learning). Figure 6 shows the mean

proportion of risky choices in each round by treatment. The mean proportions of players

choosing the risky option in the 4,8 treatment and the {$12, $8} treatment are quite sta-
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Figure 5: Frequency Distribution of First Period Subject Error Rate by Treatment.

ble across rounds and are close to the theoretical predictions of one and zero, respectively.

Treatments {$8, $4} and {$8, $12}, however, reflect much more volatility and are quite far

from the theoretical predictions of zero and one, respectively. Nevertheless, there are only

two instances where the treatment time trends cross, and the vertical alignment is consistent

with Hypotheses 1 and 2.

We now analyze the period one decisions controlling for player-specific effects and round

effects. Table 2 reports the regression results for linear probability models estimated via

ordinary least squares. Model (1) includes only the treatment dummy variables. Model (2)

adds subject and round fixed-effects. The results from the panel models are consistent with

the results from the pooled regression.

Table 3 reports tests of the hypotheses stated in the previous section using the regression

models reported in Table 2. In general, the strict versions of the hypotheses are rejected

in all cases. The subjects make errors and these errors are, by virtue of the experimental

design, one-sided so we focus on the weaker versions of the hypotheses that admit behavioral

errors. We summarize the results of the hypothesis tests regarding period one decisions below.
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 Figure 6: Mean Proportion of period one Risky Choices Across Periods by Treatment.

Table 2: Linear Probability Model Regression Results for First Period Choices.

(1) (2)
Treatment {$4, $8} Nash 0.946*** 1.257***

(0.019) (0.055)
Treatment {$8, $4} Nash 0.221*** 0.540***

(0.040) (0.055)
Treatment {$8, $12} Nash 0.467*** 0.783***

(0.055) (0.065)
Treatment {$12, $8} Nash 0.021 0.334***

(0.017) (0.057)
Subject Effects No Yes
Round Effects No Yes

R2 0.714 0.785

Notes: The dataset consists of a panel of 52 subjects over 20
decision periods (1040 observations). Errors are clustered by
subject. Standard errors are reported in parentheses. Statistical
significance of the estimated coefficients: ”*” significant at the
10% level, ”**”significant at the 5% level, and ”***”significant
at the 1% level.
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Table 3: Hypothesis Test Results for First Period Choices.

Hypothesis (1) (2)
1: HO : β4,8 − β12,8 ≤ 0 36.74 34.1

HA : β4,8 − β12,8 > 0 (0.00) (0.00)
2: HO : β8,12 − β8,4 ≤ 0 4.7 4.82

HA : β8,12 − β8,4 > 0 (0.00) (0.00)
3: HO : 1− β8,12 − β8,4 ≤ 0 3.85 2.94

HA : 1− β8,12 − β8,4 < 0 (0.00) (0.00)
4: HO : 1− β8,12 − β8,4 ≤ 0 3.85 2.94

HA : 1− β8,12 − β8,4 ≤ 0 (0.99) (0.99)
5: HO : 1− β4,8 ≥ 1− β8,12 8.96 9.12

HA : 1− β4,8 < 1− β8,12 (0.00) (0.00)
6: HO : β12,8 ≥ β8,4 5.06 4.77

HA : β12,8 < β8,4 (0.00) (0.00)
Subject Fixed-Effects N.A. 983.64

(0.00)
Round Fixed-Effects N.A. 1.54

(0.11)
Notes: Columns correspond to the models estimated in Table
2. The numbered hypothesis tests report the t-statistic. The
demographic and round effects are F-statistics. The numbers in
parentheses are the p-values. ”N.A.” means not applicable.

Result 1. Both models reject the hypothesis that subjects choose the risky option as often in

the {$4, $8} treatment as in the {$12, $8} treatment, in the first period.

Result 2. Both models reject the hypothesis that subjects choose the risky option as often in

the {$8, $12} treatment as in treatment {$8, $4}, in the first period.

Result 3. Both models reject the hypothesis that errors in the {$8, $12} treatment are larger

than errors in the {$8, $4} treatment in the first period.

Result 4. Neither model rejects the hypothesis that errors in the {$8, $12} treatment are

smaller than errors in the {$8, $4} treatment in the first period.

Result 5. Both models reject the hypothesis that errors in the {$4, $8} treatment are larger

than errors in the {$8, $12} treatment in the first period.

Result 6. Both models reject the hypothesis that errors in the {$12, $8} treatment are larger

than errors in the {$8, $4} treatment in the first period.

The results reported in Figures 4-6, as well as the regression analysis, are consistent with

the error space being one-sided and the relative magnitude of decision cost versus decision

reward. Andreoni (1995) noted that in a binary decision setting (his example was a public

22



Information Spillovers In a One-Armed Bandit Game Boyce, Bruner, and McKee

goods contribution game) errors can only be one-sided (i.e., contribute when it is rational

to not). Thus, random decision error in a binary setting, such as ours, will only lower the

sample proportion away from 1, as in treatment {$8, $12}, or raise the sample proportion

above zero, as in treatment {$8, $4}. Smith and Walker (1993) demonstrate the importance

of salience in the presence of random decision error. For a given cost of making a decision,

here captured in the variance of the random error term, the probability of making the optimal

decision is increasing. Hence, since treatments {$8, $4} and {$8, $12} are the least salient

(i.e. they have the lowest opportunity cost of suboptimal behavior), these exhibit the largest

error rates and the most volatile behavior. Still, we find support for Hypothesis 1 and 2,

that players free-ride. Overall, the evidence suggests players respond to the incentives in

the experimental treatments in a manner that is consistent with theory, but behavior is

not nearly as responsive as theory predicts. In particular, players appear to be somewhat

myopic (i.e. they undervalue information), nonetheless, they behave strategically based on

what value they place on information. To further investigate whether players valued first

period information, we analyze the extent to which they responded to the information signals.

That is, did players actually use the first period information in a manner consistent with

theory? Accordingly, we turn our attention to second period decisions.

4.2 Analysis of Second Period Decisions

Table 4: Second Period Error Rates by Treatment

Treatment {$4, $8} {$8, $4} {$8, $12} {$12, $8}
Error when N = 0 1− β4,8 β8,4 − 0 β8,12 − 0 β12,8 − 0
Percentage Errors 7.69% 23.08% 0.00% 3.23%
Error when X < XSi

N 1− β4,8 1− β8,4 1− β8,12 1− β12,8

Percentage Errors 38.36% 10.61% 24.53% 1.16%
Error when X ≥ XSi

N β4,8 − 0 β8,4 − 0 β8,12 − 0 β12,8 − 0
Percentage Errors 8.25% 33.33% 25.40% 70.00%

Table 4 presents the error rates relative to the Bayesian predictions in the second period

choices. When N = 0, players in treatment {$4, $8} should choose the risky option, and

players in treatments {$8, $4}, {$8, $12}, and {$12, $8} should choose the safe option. When

N > 0, players in each treatment should choose the risky option whenever X ≥ XSi
N , and

choose the safe option otherwise. When N = 0, players in the {$4, $8}, {$8, $12}, and

{$12, $8} treatments make few errors. But players in the {$8, $4} make errors relative to
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the Bayesian predictions roughly 1
4

of the time. When N > 0, error rates range from 10% to

33% for players in the {$8, $4} and {$8, $12} treatments, and errors are roughly symmetric

across positive and negative signals. Players in the {$4, $8} and {$12, $8} treatments respond

differently to positive and negative signals. Players in the {$4, $8} treatment make more

errors when the signal is bad and players in the {$12, $8} treatment make more errors when

the signal is good. Given that these players are highly likely to have chosen the correct

choice in the first period this suggests that their error rates are much higher when the signal

does not reinforce their first period choices.15

To explore this more fully, Figure 7 depicts the proportion of players choosing the risky

option according to the proportion of successes observed in the first period, for the cases

where one or more players has chosen the risky option in period one. In the left panel, exactly

one player in a pair chose the risky option and in the right panel, one or both player(s) in

a pair chose the risky option.16 Figure 7 shows that across each treatment the propensity

to choose the risky option is increasing in the number of observed successes. However, the

model generates sharp predictions regarding responses to information.

Restricting our attention to the left panel, we see the largest increase in the propensity to

choose the lottery in each treatment occurs after observing the critical number of successes.

For example, given an uninformative prior, players in {$4, $8} should choose the safe option

only if they observe no successes out of three draws in the first period, otherwise they

should choose the risky option. The largest increase in the propensity to choose the lottery

in this treatment occurs after observing at least one success, an increase of 40%. The no

uninformative prior prediction for the {$8, $4} and {$8, $12} treatments is to choose the safe

option after observing less than two successes and to choose the risky option otherwise. In

both treatments we observe the largest increase in the propensity to choose the risky option

occurring after observing at two successes, increases of 42% and 32% respectively. Finally,

the no information prior prediction for the {$12, $8} treatment is to choose the guaranteed

amount after observing anything less than three successes. Indeed, the only significant

increase in the propensity to choose the lottery occurs after observing three successes, an

increase of 27%.

We saw from the first period analysis that the Nash equilibrium predicts that players were

more likely to choose the risky option in the first period when they are in the {$4, $8} and

15These error rates are influenced fairly significantly by a relatively small number of players. In the {$4, $8} treatment 21
players always choose the risky option while none always choose the risky. In the {$8, $4} treatment 2 players always choose
the risky option while 6 always choose the safe option. In the {$8, $12} treatment 1 player always chose the risky option while
14 always choose the safe option. In the {$12, $8} treatment 39 subjects always chose the risky option.

16For 274 observations, N = 0; for 644 observations, N = 3; and for 122 observations, N = 6.
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Figure 7: Percentage of period Twp Risky Choices by Proportion of Successes Observed.

{$8, $12} treatments.17 It is in these treatments where cognitive dissonance would make a

player more likely to continue to play their first period choice even in the face of contradictory

evidence from the sample of first period draws. The left panel of Figure 7 shows that the

propensity to choose the risky option is greatest in these two treatments.

Table 5 reports the regression results for linear probability model estimates of second

period choices using both ordinary least squares. We estimate two equations using both

treatment variables for hypothesis tests (model 1) as well as controlling for player and round

fixed-effects (model 2). Models (1) and (2) include three types of variables: treatment

effects interacted with the dummy variable DXN , which is one when the critical value of

X is observed, treatment effects interacted with the value X −XSi
N , and a dummy variable

that is one if the first period choice was the risky option. The intercept in these models

corresponds to the mean proportion of players who chose the risky option when there was

no information generated from the first period decisions (i.e. N = 0).

The regression results can be interpreted as marginal effects given the linear specification.

Twenty percent of players chose the risky option in period two when N = 0 draws were

observed in period one. The coefficients on the treatments interacted with the dummy

variables for the Bayesian criterion being satisfied are the increases in the proportion of

players choosing the risky option when the Bayesian criterion that is satisfied. Thus, adding

this to the constant yields the proportion of risky choices made by these players. The

regressions indicate that the proportion who choose the risky option when the Bayesian

17Indeed, when only one player chooses the risky option (i.e. N = 3), the data in Figure 8 shows that 99% and 97% choose
the risky option as X/N → 1.
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Table 5: Linear Probability Model Regression Results for Second Period Choices.

(1) (2)
Treatment {$4, $8} Bayes 0.48*** 0.57***

(0.07) (0.06)
Treatment {$8, $4} Bayes 0.38*** 0.41***

(0.07) (0.04)
Treatment {$8, $12} Bayes 0.28*** 0.31***

(0.10) (0.07)
Treatment {$12, $8} Bayes 0.09 0.11

(0.09) (0.07)
Treatment {$4, $8} Salience 0.02 0.01

(0.02) (0.02)
Treatment {$8, $4} Salience 0.08*** 0.06***

(0.02) (0.02)
Treatment {$8, $12} Salience 0.14*** 0.12***

(0.05) (0.04)
Treatment {$12, $8} Salience 0.09*** 0.08***

(0.02) (0.02)
Cognitive Dissonance 0.21*** 0.19***

(0.05) (0.04)
Constant 0.20*** 0.14

(0.02) (0.10)
Round Effects No Yes
Subject Effects No Yes
R-squared 0.475 0.475
Notes: See the notes to Table 2.

Table 6: Hypothesis Test Results for Second Period Choices.

Hypothesis (1) (2)
7: HO : β4,8A = β8,4A = β8,12A = β12,8A = 0 15.73 37.89

HA : βi,jA 6= 0 for at least one i, j (0.00) (0.00)
8: HO : β4,8B = β8,4B = β8,12B = β12,8B = 0 7.44 7.39

HA : βi,jB 6= 0 for at least one i, j (0.00) (0.00)
9: HO : βCD ≤ 0 17.04 25.73

HA : βCD > 0 (0.00) (0.00)
10: HO : β8,4A = β8,12A and β8,4B = β8,12B 1.46 and 1.65 2.28 and 2.08

HA : β8,4A 6= β8,12A or β8,4B 6= β8,12B , or both (0.15) (0.17) (0.13) (0.15)
Subject Fixed-Effects N.A. 1.29

(0.09)
Round Fixed-Effects N.A. 0.63

(0.89)
Notes: The table reports F-statistics (p-values in parentheses) for the tests on the coeffi-
cients from Table 5.
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criterion has been met varies from 0.68 (model 1) to 0.71 (model 2) for treatment {$4, $8};
from 0.55 (model 2) to 0.58 (model 1) for treatment {$8, $4}; from 0.45 (models 2) to 0.48

(model 1) for treatment {$8, $12}; and varies from 0.25 (model 2), which is not statistically

different zero, to 0.29 (model 1) for treatment {$12, $8}. The results suggest an increase

in the salience of the decision encourages players to choose the predicted choice, as all

salience effects positive in sign and are statistically different from zero in all but the {$4, $8}
treatment. Players also show a propensity to stick with their first period choices. The

cognitive dissonance parameter shows that a subject who chose the risky option in period

one is between 20% and 25% more likely to choose the risky option in period two.

The regression analysis permits formal testing of the hypotheses stated in Section 3.2.

We report the results of the hypotheses tests in Table 6. We summarize the results of the

hypotheses tests regarding period two decisions below.

Result 7. Both models reject the hypothesis that the probability of choosing the risky option

in the second period does not increase after observing the critical number of successes.

Result 8. Both models reject the hypothesis that salience has no effect upon deviations from

the Nash predictions in the second period.

Result 9. Both models reject the hypothesis that cognitive dissonance has no effect upon

deviations from the Nash predictions in the second period.

Result 10. Neither model rejects the hypothesis that players in the {$8, $4} treatment behave

the same as players in the {$8, $12} treatment.

We find support for the hypothesis that that the probability of choosing the risky option in

the second period increases after observing the critical number of successes; lending support

for Bayesian updating/reinforcement learning. We also find evidence that salience matters;

namely, the more the number of successes observed exceeds the critical number of successes,

the greater the probability of choosing the risky option in the second period. We also find

evidence that cognitive dissonance influenced behavior. Specifically, if players’ beliefs were

such that they chose the lottery in the first period, they were more likely to do so in the

second period. Note that this psychological effect is not inconsistent with the game theoretic

model presented earlier. We do not explicitly induce prior beliefs. Hence, depending on the

extent to which beliefs are skewed towards the lottery, players may very well update their

beliefs in accordance with Bayes rule and still believe they were better off in the second

period, regardless of the proportion of successes observed. Finally, players in treatments
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{$8, $4} and {$8, $12} should behave identically in the second period. We do not find a

statistical difference in these players’ second period behavior.

5 Discussion and Conclusions

We began with the question: how do information spillovers in a one-armed bandit game

affect agents’ decisions to take a risk, thereby providing information to others engaged in

similar activities? This is a fairly common decision setting and an understanding of the

information provided by players’ decisions can inform policy debates concerning the public

reporting of apprehension rates of various crimes, detection rates for tax evasion, and so on.

In such settings, some individuals will have private incentives to take risks but in doing so

their behavior can inform others of the likelihood of a good (or bad) payoff. Regulatory pol-

icy would be more efficient if it incorporated the presence of such informational spillovers.

The same can be said for policy directed toward encouraging risk taking - such as, poli-

cies encouraging research and development and/or the adoption of new technology. Future

research will integrate our findings with the investment models of Dixit and Pindyck (1999).

Obviously, many real-world situations where agents engage in strategic experimentation

are more complex than our laboratory environment. For example, the actions and outcomes

of other agents may only be partially observable. Still, it is necessary to begin with a test

of the simplest possible form of the game. After all, if behavior in the simplest setting is in-

consistent with theoretical predictions, then we cannot expect behavior in more complicated

settings to conform with theory. Hence, establishing behavioral regularities in the simplest

possible scenario is a necessary prerequisite to investigations of behavior in more complicated

environments. To the best of our knowledge, this is the first paper to test Nash equilibrium

predictions in an armed-bandit problem with information spillovers.

Our laboratory results suggest that players in this setting exhibit behavior that is con-

sistent with observations from public goods experiments. We find players free-ride too much

when they should not, and too little when they should. In aggregate, information provision

is below the optimal level. However, when only one player pulls the arm, it is the predicted

player at least 96% of the time; the others free-ride. Furthermore, subjects respond to in-

formation in a manner consistent with Bayesian updating suggesting they place some value

on information. Deviations from Bayesian predictions appear to be attributable, in part,

to reward salience and to cognitive dissonance. Hopefully, our results will motivate future

models of strategic experimentation to incorporate such factors.
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