1. Start with the following supply & demand schedules: \(P = 200 - 2Q \) & \(P = 20 + 4Q \).
 a) Find the market-clearing (equilibrium) \(P \) & \(Q \) and the \(P^\text{demand} \) & \(P^\text{supply} \) at the equilibrium \(P \) & \(Q \).
 b) If there is a $30 tax on sellers, find the equilibrium \(P \) & \(Q \). What are the net prices to buyers & sellers?
 c) With no tax on sellers, but a $30 tax on buyers, find the equilibrium \(P \) & \(Q \). What are the net prices to buyers & sellers?
 d) What is the incidence of either tax?

2. If \(F \) is large & \(MC \) is very low, what are the implications for the # of firms & the form of competition?

3. Suppose \(C = 9000 + 10q^2 \). Find the output at the minimum point of the AC curve. What are \(MC \) and \(AC \) at that point?

4. Suppose a price taker has \(C = 1800 + 2q^2 \) and \(P = 100 \).
 a) Find the firm’s profit-maximizing \(q \) and its \(\pi \).
 b) If each firm has identical cost, is the market in long run equilibrium? If it is not, what will happen & what will \(P \) equal in the long run? If \(\pi < 0 \) currently, will each firm operate?

5. If MC falls for all firms in a market, what happens to \(P \), \(Q \), & \(\pi \)? How does the market \(E^\text{demand} \) affect your answer?