1) A monopolist can segment its market into two sub-markets, call them 1 & 2. The demand in the submarkets is:

\[P_1 = 20 - \frac{q_1}{2} \] \& \[P_2 = 35 - q_2. \]

Also, \(C = 200 + 5Q \), with \(Q = q_1 + q_2. \)

a) Find the profit-maximizing \(P_1, P_2, q_1, q_2, \) & \(\pi \), & find \(E^D_p \) in each sub-market at the profit-maximizing \(P \) & \(q. \)

b) Which sub-market gets the lowest \(P? \) Why?

c) If the firm’s capacity is 25, find the profit-maximizing \(P_1, P_2, q_1, q_2, \) & \(\pi. \)

2) Using Figure 1, should the firm that can divide its buyers into two sub-markets sell 40 units in sub-market 1 & 60 units in sub-market 2?

3) Suppose a monopolist has demand of \(P = 340 - Q, \) & \(C = 40Q. \) Find the profit-maximizing \(P, \) \(Q, \) & \(\pi \) when:

a) the firm can not 2-part price; &

b) the firm can 2-part price & all consumers are identical. In this part find the optimal entry fee (f) if there are N consumers.

4) In Figure 2, there are 2 types of consumers, Alphas & Betas. If the seller can not segment its market, what will the prices for quality levels 1 & 2 (\(P_1 \) & \(P_2 \)) equal? If the seller can degrade lower quality to some level \(x_0 < x_1, \) when will it be profitable to do so, & what will \(P_0 \) & \(P_2 \) be?