Sconomics of Promotion \& Tenure Committees

Timothy Perri

Presented to the Department of Economics

Appalachian State University

September 26, 2014

Promotion \& tenure decisions are critical for a university's reputation.

2 types of errors:

Accepting a bad candidate---an AB.

Rejecting a good candidate---an
RG.

Shah \& Stiglitz (1986 [AER], 1988 [EJ]).

Lazear \& Gibbs (2009 [textbook]).

Consider 2 possible ways to evaluate \& approve projects.

Shah \& Stiglitz (1986):

1) evaluators are equally
talented \& unbiased.
2) evaluators approve or reject projects.

Flat structure: one evaluator decides.

Hierarchy: two evaluators must approve or the project is rejected.

Lazear \& Gibbs (2009):
$2^{\text {nd }}$ opinion structure---in
between a flat \& a hierarchy.

Result: A flat accepts more projects.
\therefore More ABs \& fewer RGs with a flat than a hierarchy.

A $2^{\text {nd }}$ opinion structure is in between a flat \& a hierarchy in ABs \& RGs.

Summary.

1) There is always a tradeoff between ABs \& RGs.
2) The tradeoff is the same: the closer we are to a flat, the more ABs \& the fewer RGs we have.

Academia has some important differences from the evaluation

 structures just discussed.\author{

1. Top administrators decide; others merely recommend.
}
2. Evaluators differ in talent--department committees vs. outside committees.
3. There may be favorable bias by the department committee.

1. ADMINISTRATORS DECIDE

For the most part, ignore differences between various levels of administrators.
(Possibly think of the chair as part of the dept. committee.)

Also, call it a tenure decision.

Flat structure: department committee recommends to the administration.

Hierarchy:
department \& college
committees recommend to the administration.

Note: although there are 2

 levels with 1 committee, I still call this a flat structure because the administration only is active with 2 committees \& a split.
I assume the administration

accepts the committee

recommendations unless there
is a hierarchy \& the committees
disagree.

Let $t=$ the probability the

 administration grants tenure when the committees are split.If $t=0$, the administration
essentially does not exist---the
Shah-Stiglitz result.

Prendergast \& Topel (1996)

Supervisors value their ability
to affect the welfare of
subordinates.
\therefore I assume administrators will
not or cannot commit to not
intervening.

2. THE COMMITTEES ARE NOT EQUALLY TALENTED.

Let $p=$ the probability the dept. committee is correct---accepts a good candidate \& rejects a bad candidate.

Let $\rho=$ the probability the college committee is correct.

Lazear \& Gibbs (2009): with

otherwise identical evaluators,
the $2^{\text {nd }}$ evaluator (college com.)
is more accurate because it sees
what the $1^{\text {st }}$ committee did:
$\rho>p$.

However, the department
should be more knowledgeable than outsiders.

Putting aside Lazear \& Gibbs
point, we then would have
$p>\rho$.

\therefore We could have $p \frac{\geq}{<} \rho$.

I generally argue $p>\rho$, but I

 consider the possibility $\rho<p$.

3. BIAS

Probability $=f$ that dept. com.
is favorably biased \&
recommends tenure regardless
of the candidate's perceived ability.

Why no negative bias by the

 dept., or any bias by the college?

No positive bias by the college because those outside the dept. aren't as familiar with the candidate.

No unfavorable bias by either

committee because:

1) some things can be hidden;

2) ethnic, racial, \& gender bias
are much less of a problem
today; \&
3) similar levels of bias in the 2
committees cancel out (\approx).
**If $p=\rho$ \& both committees
have favorable bias $=f$, the
result is the same as if there
were no bias.**

U.S. until 1940s:

a good deal of anti-Semitism in
universities.
Sometimes depts. were biased
\& admin. was not, sometimes
the opposite occurred, \&
sometimes bias was throughout
a university.

I will use positive analysis.

However, the model may be
used normatively.

"A good positive theory is a description of what is, and this precludes a role for those who want to teach it to others as a behavior ideal...Alternatively, we can argue that businesses do not behave according to our models but should...The answer lies in the middle ground. While economics may do very well at explaining most of what goes on in the world, some economic agents may not behave as they should." (Lazear, 1995)

The model.

I generally assume:

$1 / 2 \leq \rho \leq p<1$.
Again, I do consider what
happens if $\rho \geq p$.

Probability of accepting a bad candidate with 1 committee $=$
prob(AB|1).
Probability of accepting a bad
candidate with 2 committees $=$
prob(AB|2).

Probability of rejecting a good candidate with 1 committee $=$
prob(RG|1).
Probability of rejecting a good
candidate with 2 committees $=$
prob(RG|2).

Accept bad candidates

$$
\operatorname{prob}(\mathrm{AB} \mid 1)=f+(1-f)(1-p),
$$

$\operatorname{prob}(\mathrm{AB} \mid 2)=$
$[f+(1-f)(1-p)][1-\rho+t \rho]$

$+p(1-f)(1-\rho) t$.

If $t=0$,
 $\operatorname{prob}(\mathrm{AB} \mid 1)>\operatorname{prob}(\mathrm{AB} \mid 2)$

If $t=1$,
$\operatorname{prob}(\mathrm{AB} \mid 1)<\operatorname{prob}(\mathrm{AB} \mid 2)$.

\therefore For $t<t_{B}$, we have more $A B s$

 with a flat, but the opposite istrue if $t>t_{B}$. ©
Why could there be more ABs
with a hierarchy?

With a flat, if the dept. rejects,

no tenure results.

With a hierarchy, if dept.
rejects, \& college accepts, t of the time tenure occurs.

The $2^{\text {nd }}$ chance aspect of the

hierarchy can lead to

$\operatorname{prob}(\mathrm{AB} \mid 1)<\operatorname{prob}(\mathrm{AB} \mid 2)$.

Rejecting good candidates

If $t=0$,

$\operatorname{prob}(\mathrm{RG} \mid 1)<\operatorname{prob}(\mathrm{RG} \mid 2)$
If $t=1$,
$\operatorname{prob}(\mathrm{RG} \mid 1)>\operatorname{prob}(\mathrm{RG} \mid 2)$.

\therefore For $t<t_{G}$, we have fewer
RGs with a flat, but the opposite
is true if $t>t_{G}$. ©
Why could there be fewer RGs
with a hierarchy?

With a flat, if the dept. rejects,
that's the end.

With a hierarchy, a dept.
rejection \& acceptance by the
college lead to tenure t of the
time.

$$
t_{B}=\frac{\rho[1-p(1-f)]}{p+\rho-2 p \rho(1-f)-p f}
$$

$$
\begin{aligned}
& t_{G}= \\
& \frac{[(1-\rho)][f+p(1-f)]}{f(1-\rho)+[1-f][p(1-\rho)+\rho(1-p)]}
\end{aligned}
$$

$$
\begin{aligned}
& 0<\left.t_{B}\right|_{f=0}<\left.t_{B}\right|_{f=1}=1 . \\
& \frac{\partial t_{B}}{\partial f}>0 . \\
& 0<\left.t_{G}\right|_{f=0}<\left.t_{G}\right|_{f=1}=1 . \\
& \frac{\partial t_{G}}{\partial f}>0 .
\end{aligned}
$$

If $f \rightarrow 1$, it is not possible to

have more ABs or fewer RGs

than with a flat---the dept. accepts everyone!

Potential dominance of the flat structure

This is based on $p>\rho$.

If $\rho>p$, the hierarchy could

dominate.

Start with $f=0 \& p=\rho$.

***Then $t_{B}=t_{G}=1 / 2 . * * *$

Then let $p \uparrow \& \rho \downarrow$.

The effect on t_{B}.

$\frac{\partial t_{B}}{\partial p}$? but, if $f=0, \frac{\partial t_{B}}{\partial p}<0$.
$\frac{\partial t_{B}}{\partial \rho}>0$.
Thus, if p 个or $\rho \downarrow, t_{B} \downarrow$:

$$
* * t_{B}<1 / 2 . * *
$$

The effect on t_{G}.

$$
\begin{aligned}
& \frac{\partial t_{G}}{\partial p}>0 . \\
& \frac{\partial t_{G}}{\partial \rho} \text { ?, but, if } f=0, \frac{\partial t_{G}}{\partial \rho}<0 .
\end{aligned}
$$

Thus, if $p \uparrow$ or $\rho \downarrow, t_{G} \uparrow$.

$$
* * t_{G}>1 / 2 . * *
$$

Why?

If $p \uparrow$, the dept. is less likely to recommend a bad candidate

If $\rho \downarrow$, the college is more likely to recommend a bad candidate.

Thus, the advantage of a hierarchy in terms of $A B s \downarrow$.
${ }^{* *} t_{B}$ falls ${ }^{* *}$

If $p \uparrow$, the dept. is more likely to recommend a good candidate

If $\rho \downarrow$, the college is less likely to recommend a good candidate.

Thus, the advantage of a flat in terms of RGs \uparrow.
$*^{*} t_{G}$ rises ${ }^{* *}$

Figure One. When $p>\rho$ and $f=0$.

\[

\]

From Table Two ($f=.2$).

$\begin{array}{llll}p & \rho & t_{B} & t_{G}\end{array}$
. $9 \quad .8$. 609 . 742
. $9 \quad .7 \quad .476$. 831
. 9 . 6 . 361 . 885
. 8 . 768 . 692
. 8 . 458 . 778
. 7 . 6 . 541 . 679

Extensions

If the administration only tenures with a split when the dept. is favorable.

Then $t_{B}=t_{G}=1$.
A flat always has more ABs \&
fewer RGs---no $2^{\text {nd }}$ chance.

If the administration only tenures with a split when the college is favorable.

Then $t_{G}=1, \& t_{B}<1$ only if:
$p(1-f)>\rho$.

A larger $p(1-f)$ means more accuracy or less bias by the dept.

A smaller ρ means less accuracy by the college.

Thus, we could have fewer ABs with a flat than with a

hierarchy.

With less chance of promoting a

 good candidate with a hierarchythan in my general model,
$t_{G}=1$---a flat always has fewer

RGs than a hierarchy.

Dept. committee vs. chair.

No outside committee.
Both have same accuracy \& bias.

Result: $t_{G}=t_{G}=1 / 2$.
Bias cancels.

Conjecture:

For tenure particularly,

universities fear ABs more than

RGs.

Reject a good candidate:
can always find another.

Evidence:

Universities with top 75 U.S. econ. depts.

Top 7 schools:
3 have 1 committee (Chicago,
Stanford, \& Northwestern).
3 have more than 1 committee (Harvard, Berkeley, \& MIT)

NYU: dean has a choice.

Thus, essentially $1 / 2$ of top 7

 have 1 committee.
Duke (\#14): 1 committee.

Cal Tech (\#41): ?
All of the others have > 1

committee.

If universities have the same
objective (reducing ABs),
all would have a hierarchy if

$$
t_{B}=t_{G}=1 .
$$

Figure One. When $p>\rho$ and $f=0$.

\therefore Evidence is consistent with

my model--- $t_{B}<1$.
However, is $t_{B}<t_{G}$ or vice
versa?

That is, is $p>\rho$, or is $\rho>p$?

(1) Suppose $\rho>p(f=0)$.

Then $t_{G}<1 / 2<t_{B}$ (my general

 model).
Universities worried about ABs

choose a flat only if $t>t_{B}>1 / 2$.

Since I doubt many universities

(these are with top 75 econ
depts.) have $t>t_{B}>1 / 2$, we see
few flat.

However, does any top 75
university have $t>1 / 2$?

Particularly, do Chicago, Stanford, Northwestern,

Duke, \& (possibly) NYU?

If they don't, they would not

choose a flat.

Thus, I am skeptical that $\rho>p$.
(2) Suppose $p>\rho(f=0)$.

Then $t_{B}<1 / 2<t_{G}$ (my general
model).
Now t_{B} is lower than in (1)---so
it's more likely to have (in this
case) $t>t_{B}$.

Which means it's more likely to

have universities that fear ABs choose a flat in 2 .

Why aren't there more
universities with a flat?

Argument for $p>\rho$.

a) If t is low, we expect few to

choose a flat even if $t_{B}<1 / 2$.

b) Again, does any
university with a top 75 econ.
dept. have $t>1 / 2$?

c) If $p>\rho$ we can have $t_{B}<1$ in

2 cases: both committees treated
the same, \& tenure with a split
only occurs if the college
committee is favorable.

If $\rho>p, t_{B}=t_{G}=1$ when a split

can result in tenure only if the

college committee is favorable.

Conclusion

Evidence is consistent with:

i. some universities
get fewer ABs with a flat ($t_{B}<1$);
ii. t is not too high (not many universities have $t>t_{B}$);
iii. Dept. committee is not supreme ($t_{B}=t_{G}=1$ if it were).

Policy

Colleges with more

heterogeneity:

There a fear of $A B s \Rightarrow$ a good
chance a flat is optimal.

$$
*_{t}>t_{B} * *
$$

In other colleges, $[p-\rho]$ is not

large.

A hierarchy may be optimal.

\therefore Universities might adopt
NYU's policy---let colleges
decide on an external
committee.

()

