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Little change in global drought over the past 60 years
Justin Sheffield1, Eric F. Wood1 & Michael L. Roderick2

Drought is expected to increase in frequency and severity in the
future as a result of climate change, mainly as a consequence of
decreases in regional precipitation but also because of increasing
evaporation driven by global warming1–3. Previous assessments of
historic changes in drought over the late twentieth and early
twenty-first centuries indicate that this may already be happening
globally. In particular, calculations of the Palmer Drought Severity
Index (PDSI) show a decrease in moisture globally since the 1970s
with a commensurate increase in the area in drought that is attri-
buted, in part, to global warming4,5. The simplicity of the PDSI,
which is calculated from a simple water-balance model forced by
monthly precipitation and temperature data, makes it an attractive
tool in large-scale drought assessments, but may give biased results
in the context of climate change6. Here we show that the previous-
ly reported increase in global drought is overestimated because
the PDSI uses a simplified model of potential evaporation7 that
responds only to changes in temperature and thus responds incor-
rectly to global warming in recent decades. More realistic calcul-
ations, based on the underlying physical principles8 that take into
account changes in available energy, humidity and wind speed,
suggest that there has been little change in drought over the past
60 years. The results have implications for how we interpret the
impact of global warming on the hydrological cycle and its
extremes, and may help to explain why palaeoclimate drought
reconstructions based on tree-ring data diverge from the PDSI-
based drought record in recent years9,10.

Drought is a major natural hazard that can have devastating impacts
on regional agriculture, water resources and the environment, with far-
reaching impacts in an increasingly globalized world11. The perceived
abundance of drought in the 2000s, such as long-term events in the
western United States, southeast Australia and northeast China, and
the recent short-term but severe events in Russia and the central United
States, hint that climate change may be a forcing factor and this is only
likely to get worse, given projected climate warming and precipitation
changes for the twenty-first century1,2. Many studies have attributed
the severity and length of recent droughts to global warming5,12. The
Fourth Assessment Report (AR4) of the Intergovernmental Panel on
Climate Change (IPCC) summarized the evidence in the following
terms: ‘‘More intense and longer droughts have been observed over
wider areas since the 1970s, particularly in the tropics and subtropics.
Increased drying linked with higher temperatures and decreased
precipitation has contributed to changes in drought’’13. The AR4 drew
heavily from historic analyses of the PDSI, which shows an increase
in drought in the last few decades, regionally5,14 and globally4, that is
commensurate with the increase in global temperatures. The AR4 sum-
mary has been substantially revised, however, in the recent IPCC
Special Report on Extremes3 that notes the over-reliance on the PDSI
and possible overestimation of the increase in regional and global
drought.

The PDSI was developed originally as an agricultural monitoring
tool in the United States in the 1960s15 that helped in allocating aid to
stricken farmers. It is used pervasively for operational monitoring and
increasingly in studies of climate change2,16. Its popularity stems from

its ease of use and long history in agricultural applications. However,
the PDSI has several shortcomings because of its simplicity3,17,18,
including the treatment of potential evaporation (PE, the evaporative
demand of the atmosphere), which is calculated from temperature data
by using the empirical Thornthwaite equation7. It has been well estab-
lished that evaporation is a function of more than just temperature,
and the correct physics includes radiative and aerodynamic controls
on evaporative demand8,19–21. Temperature-based PE methods appa-
rently perform relatively well in climatological applications because air
temperature is correlated with net radiation and humidity at weekly,
monthly and subannual timescales22. However, estimating trends is
problematic and there is extensive literature showing that temper-
ature-based methods are flawed, inherently because the temperature
state does not uniquely determine the evaporative flux (see Sup-
plementary Information). In the context of climate change, the tem-
perature-based approach responds to recent observed warming with
increasing PE. When used in the PDSI model, which derives soil
moisture from the balance between precipitation, evaporation and
runoff, the increase in PE drives an increase in drought globally13 in
addition to the impact of any changes in precipitation. However,
numerous studies based on observations and detailed physical model-
ling have shown regional declines in evaporative demand over past
decades as a result of various combinations of declining radiation, va-
pour-pressure deficit and/or wind speed6, despite generally increasing
regional temperatures.

To resolve this discrepancy and provide an improved estimate of
changes in global drought over the past 60 years based on better

1Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, USA. 2Australian Research Council Centre of Excellence for Climate System Science, Research
School of Earth Science & Research School of Biology, The Australian National University, Canberra ACT 0200, Australia.

2

1

0

–1

–2

–3

P
D

S
I

60

40

20

0

A
re

a
 i
n
 d

ro
u
g

h
t 

(%
)

1950 1960 1970 1980 1990 2000

a

b

Figure 1 | Global average time series of the PDSI and area in drought.
a, PDSI_Th (blue line) and PDSI_PM (red line). b, Area in drought (PDSI
,23.0) for the PDSI_Th (blue line) and PDSI_PM (red line). The shading
represents the range derived from uncertainties in precipitation (PDSI_Th and
PDSI_PM) and net radiation (PDSI_PM only). Uncertainty in precipitation is
estimated by forcing the PDSI_Th and PDSI_PM by four alternative global
precipitation data sets. Uncertainty from net radiation is estimated by forcing
the PDSI_PM with a hybrid empirical–satellite data set31 and an empirical
estimate. The other near-surface meteorological data are from a hybrid
reanalysis–observational data set31. The thick lines are the mean values of the
different PDSI data sets. The time series are averaged over global land areas
excluding Greenland, Antarctica and desert regions with a mean annual
precipitation of less than 0.5 mm d21.
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physics, we calculate global changes in the PDSI using two methods for
PE. We use the Thornthwaite algorithm and a physically based estim-
ate based on the currently accepted Penman–Monteith (PM) equa-
tion19,23 forced by our global meteorological data set and a set of
alternative precipitation and net radiation data sets (see Methods).
Because the PM is a more accurate, comprehensive and physically
based model of PE (see Supplementary Information), it also has greater
data requirements, which until recently has precluded its use at large
scales. However, the increasing availability of detailed meteorological
data from gridded ground observations, satellite remote sensing and
atmospheric model reanalyses now makes it possible to calculate
improved estimates that take into account radiative and aerodynamic
controls. Recent studies have claimed that there is little difference
between the PDSIs that use the Thornthwaite and PM algorithms
(PDSI_Th and PDSI_PM, respectively)24,25 but this can be attributed
to inconsistencies in the forcing data sets and simulation configuration
(see Supplementary Information).

The global averaged time series of PDSI using the two PE methods
(Fig. 1a) clearly shows the decreasing trend in the PDSI_Th since the
1970s but not for the PDSI_PM. Uncertainty due to precipitation and
net radiation is estimated using four different global precipitation data
sets and two different net radiation data sets, and is represented by the
shading. The trend for 1950–2008 is 20.037 6 0.004 yr21 (P , 0.01)
and 20.018 6 0.005 yr21 (P , 0.01) for the PDSI_Th and PDSI_PM,
respectively. The more recent trend over 1980–2008 is similar for the
PDSI_Th (20.032 6 0.008 yr21; P , 0.01) but is essentially zero for
the PDSI_PM (0.003 6 0.018 yr21; not significant). The global area in

drought (Fig. 1b) from 1980 to 2008 increases by 0.559 6 0.117% per
year (P , 0.01) for the PDSI_Th and increases by 0.078 6 0.205% per
year (not significant) for the PDSI_PM. Despite the smaller overall
trend in PDSI_PM, there is still an increase in drought area, although
this is seven times smaller than the PDSI_Th drought area trend. The
spatial distribution of trends in the PDSI_Th (Fig. 2) shows drying
across much of the global land, particularly over Africa and eastern
Asia. In contrast, the PDSI_PM shows a mixture of drying and wetting
that combines to give a smaller trend globally. The equivalent trends
in the PE_Th are increasing everywhere (98% of land area), as expected
given the global increase in temperature, but are a mixture of in-
creases (58% of land area) and decreases (42%) for the PE_PM. The
two methods disagree in the sign of the trends across much of northern
South America, Central America, eastern North America, eastern sub-
Saharan Africa, western Russia, southern and southeast Asia, and
Australia. Because some of these regions are water-limited, the impact
on actual evaporation, and therefore the PDSI, is small. However, in
energy-limited regions such as northern Eurasia and the Amazon, the
differences in PE translate into differences in the sign of the PDSI
trends.

The results show that previous calculations of the increase in global
drought are overestimated. However, there are several sources of un-
certainty in our approach, not least from the errors in the meteoro-
logical data. We use contemporary data, which are the best that are
currently available globally, but we recognize that they are not perfect.
Nevertheless, the regions of decreasing PE trends estimated with the
PM model are generally in agreement with the abundance of evidence
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Figure 2 | Trends in the PDSI and PE. a, c, e, Non-parametric trends for 1950–
2008 in annual average PDSI (averaged over the results using the four precipitation
data sets and, for the PDSI_PM, also over the two net radiation data sets) from the
PDSI_Th (a) and the PDSI_PM (c), and their difference (e). b, d, f, Non-parametric
trends for 1950–2008 in annual average PE from the Thornthwaite equation

(b) and the PM equations (d), and their difference (f). Values are not shown for
Greenland, Antarctica and desert regions with a mean annual precipitation of less
than 0.5 mm d21. Statistically significant trends at the 95% level are indicated by
hatching. The difference in trends in e and f and its statistical significance are
calculated from the time series of differences between the two data sets.
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of decreasing pan evaporation for many regions6, which has been attri-
buted to global dimming, decreases in wind speed and in some places
decreasing vapour-pressure deficit20 (see Supplementary Information
for further discussion). The temperature-based algorithm does not cap-
ture these trends. The trends in the radiation, wind-speed and humidity
data used to calculate the PE_PM are generally consistent with regional
observations, although increasing trends in downward longwave radi-
ation and decreasing trends in wind speed from sparse monitoring
networks are generally underestimated by the global data set. However,
the possible underestimation of trends in downward longwave radi-
ation cannot explain the difference between the PDSI_Th and PDSI_PM,
and underestimation of wind-speed decline implies that the difference is
probably a conservative estimate (see Supplementary Information).
Furthermore, uncertainty due to the data on precipitation and net radi-
ation as estimated from the standard deviation of PDSI trends for dif-
ferent precipitation and net radiation data sets is much smaller than the
difference in PDSI trends due to the PE method. As these data sets
improve and the uncertainties are reduced, the magnitude of the calcu-
lated trends in drought extent will change; however, the conclusion—that
poor physical representation of potential evapotranspiration induces
untenable estimates of long-term changes in drought—will remain.

Despite the long-standing consensus that the underlying science for
temperature-based estimates of PE is flawed, compounded by the re-
sults of this and other studies6,21,22 that the flaws are manifested in
errors in the estimations of the impact of warming on drought and
hydrology in general, the reasons for the long and continued use of the
PDSI_Th for climate studies in essentially its original form are a curi-
osity. The arguments justifying its use are generally based on the
availability of data, but they are also probably related to its traditional
use for mapping agricultural drought and allocating drought aid, in
which comparisons—and thus division of aid—are based on spatial
maps made over a short period (weeks to months). Those applications
rely on spatial variations that are driven mainly by precipitation defi-
cits, and so the PDSI_Th should do a reasonable job of distinguishing
between regions of more or less drought severity at a given instant.
However, in the assessment of long-term variations due to climate
variability or change, a use for which the PDSI_Th was originally
not designed, it seems that the over-sensitivity to changes in temper-
ature, and other simplifications, compromises the comparisons in
time. Palaeoclimate reconstructions of drought may be particularly
susceptible because they are often developed by scaling tree-ring data
to match the calculated PDSI_Th for their overlap period. For some
regions, the tree-ring data, which reflect real variations in climatic and
non-climatic factors (such as disturbances), diverge from the instru-
mental-based PDSI_Th in recent decades when warming has been
most rapid (see, for example, refs 9, 10). Similarly, the ‘divergence
problem’26 as it relates to reconstructions of temperature from high-
latitude and high-elevation tree-ring data may be associated with the
assumption that temperature can be used as a surrogate for the con-
trols on growth through variations in evapotranspiration, notwith-
standing the competing impacts of other environmental factors (for
example, higher concentrations of CO2). This can lead to overestima-
tion of past changes and conversely underestimation of recent trends
in the context of the past.

The results of this study have implications for how we interpret the
role of global warming in changes to the terrestrial hydrological cycle
and its extremes, such as drought, and how we quantify the impacts of
future climate change. Several regional studies5,12 have suggested that
higher temperatures than normal were the cause for increased drought
in recent years through increased evaporation. Yet there is evidence
that the direct impact of temperature on drying may actually be a
misinterpretation of feedbacks between the land and the atmosphere.
It is more plausible that evaporation actually decreases during drought27

because of less precipitation, and that drought drives increases in tem-
peratures because there is less evaporative cooling and thus a higher
sensible heat flux warming the air28. Short-term temperature anomalies

are likely to be a response to drought, rather than a factor in forcing
drought29. Of concern is if the perceived influence of warming on
drought as quantified by empirical approaches is extrapolated into
the future and predictions of the impacts of climate change are likely
to be overestimated21,22,30. It is therefore essential to retain a perspective
on the magnitude of impacts of global warming that is based on our
physical understanding of the complex relationships between climate
and hydrological variability. The use of physically realistic hydrological
modelling merged with the wealth of in situ and satellite-based data
sources has the potential to give better estimates of changes in global
drought and its relationship with climate change.

METHODS SUMMARY
We quantify drought with the original and self-calibrating version of the PDSI
model18, which uses the Thornthwaite algorithm (PDSI_Th), and a modified
version (PDSI_PM) that uses the PM formulation for PE. The two models
(PDSI_Th and PDSI_PM) are forced with precipitation and temperature data
from our global meteorological data set31, which combines atmospheric reanalysis
data with available remote sensing and ground observations and has been updated
to 1948–2008. The meteorological data are adjusted to remove spurious trends due
to observational system changes (see Supplementary Information). We also use a
set of alternative global precipitation data sets to evaluate the impact of uncertain-
ties in global precipitation trends on the drought trends, recognizing that precipi-
tation is the main driver of drought variability but that there are uncertainties in
precipitation trends at regional to global scales. The PDSI_PM model additionally
requires radiation, humidity and other near-surface meteorological inputs, which
are also taken from the updated meteorological data set (see Supplementary
Information). Trends in annual mean values are calculated by using the non-
parametric Mann–Kendall test and given as the median value across PDSI data
sets derived from different precipitation data sets, with the standard deviation
given after the 6 sign and estimated by the scaled median absolute deviation.
An a value of 0.05 is used to test for significance. The area in drought is calculated
as the percentage of land area with a PDSI of less than 23.

Full Methods and any associated references are available in the online version of
the paper.
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METHODS
Palmer Drought Severity Index. Historically, the PDSI15 has been the tool of
choice when monitoring and analysing drought occurrence, especially in the
United States, where it is one component of the US National Drought
Monitor32. It is generally calculated on weekly to monthly timescales and uses
precipitation and temperature inputs to drive a simplified water-balance model
with a generic two-layer soil model and meteorology that is normalized with a
reference set of water balance terms. At continental to global scales its simplicity
makes it an attractive choice for reconstructing drought records4,33, for which it
has also been shown to be a proxy for soil moisture4. It has been used to ana-
lyse continental-scale to global-scale, long-term variability in drought by several
studies (see, for example, refs 4, 34, 35). The PDSI is generally well correlated with
output from more comprehensive hydrological modelling36 but diverges in cooler
seasons and high latitudes, and substantially so in drier regions.

Despite this legacy, the PDSI has been shown to be unsuitable for widespread
application and suffers from simplifications in its physical basis and soil hydro-
logy17,37. For example, its exclusion of cold-season processes makes it unsuitable
for application in many parts of the world. The usual form of the PDSI algorithm
uses several empirical constants to characterize the local climate. These were
originally derived by Palmer using data from a number of climate divisions gen-
erally located in the midwestern United States and are therefore not representative
of the whole globe. For example, the criteria for signalling the start and end of a
drought are arbitrarily based on original data from the midwestern United States.
Some of the shortcomings have been addressed by a self-calibrating version18 that
removes the spatial inconsistencies.

We quantify drought with the original and self-calibrating version of the PDSI
model18, which uses the Thornthwaite algorithm (PDSI_Th), and a modified
version (PDSI_PM) that uses the PM formulation for PE.
Thornthwaite PE algorithm. PE is modelled in the PDSI by using the temper-
ature-only-based Thornthwaite method. Thornthwaite7 correlated mean monthly
temperature with PE, as determined from the water balance for valleys in the
eastern USA, where sufficient moisture was available to maintain active transpira-
tion. The Thornthwaite formula for monthly PE (mm) is

PE 5 16d(10T/I)a

where T is the mean temperature for the month (in uC) and d is a correction factor
that depends on latitude and month. I is the annual thermal index,

I~
X12

i~1
(Ti=5)1:514

where the subscript i refers to the month of the year and a is an empirical factor,

a 5 0.49 1 0.0179I 2 0.0000771I2 1 0.000000675I3

Penman–Monteith PE algorithm. The PM approach23 is generally accepted as
the most comprehensive algorithm for modelling potential and actual evapotran-
spiration (given additional estimates of the plant and environmental resistance to
atmospheric demand). It is derived from consideration of the equations of the
surface energy balance by means of elimination of the surface temperature term. It
forms the basis for the evaporation submodel of many distributed hydrological
and land surface models, the latter of which often form the land component of
coupled climate models, and has been used as the basis for regional and global
retrievals of evapotranspiration based on satellite remotely sensed data (see, for
example, refs 38–40). The PM equation given below models the diffusion of energy
from plants or soil against stomatal and aerodynamic resistance, given inputs of
net radiation, temperature, humidity and wind speed:

ET~
DRnetz(rcpD=ra)

Dzc(1zrs=ra)

where evapotranspiration (ET) is now in W m22, which can be converted into mm
per month by dividing by the latent heat of vaporization of water, l (J kg21). D
(Pa K21) is the slope of the plot of saturated vapour pressure against air tem-
perature, Rnet is the net radiation (W m22), r is the density of air (kg m23), cp is the
specific heat of air at constant pressure (J kg21 K21), D is the vapour-pressure
deficit (Pa) and c is the psychometric constant (Pa K21). ra and rs are the aero-
dynamic and stomatal resistances (s m21), respectively. ET collapses to PE when
the stomatal resistance is zero; the recommended form of the equation19, given as
the sum of the radiative and aerodynamic components, is

PE~
D

Dzc
Rnetz

c

Dzc
6:43(1z0:536U)D

where PE is now in mm d21; U is the wind speed (m s21) at 2 m height. In
comparison with the Thornthwaite expression, which is based solely on temper-
ature, the PM models evaporation as the combination of radiative and aero-
dynamic processes, thus giving a more realistic estimate and having the potential
to be influenced by changes in humidity, radiation and wind speed, as well as
temperature.
Global meteorological forcing dataset. The two PDSI models (PDSI_Th and
PDSI_PM) are forced with precipitation and temperature data from our global
meteorological data set. The PDSI_PM model additionally requires radiation,
humidity and other near-surface meteorological inputs, which are also taken from
this data set. The global meteorological forcing dataset31 combines reanalysis data
and observations to form a global, long-term (1948–2008), 1.0u, 3-hourly data set
of precipitation, surface radiation and near-surface meteorology. The data set is
designed for forcing land-surface hydrological models and other physical models
at large spatial (regional to global) and temporal (annual to decadal) domains.
Thus the goal of the data set is to ensure robustness of long-term trends and
variability. At the same time it adjusts the short-term (daily and diurnal) variations
to match observational data where available and maintains interrelations between
variables. The data set is based on the NCEP/NCAR reanalysis (NNR)41, which
provides continuous records of atmospheric and land variables from 1948 to the
present. The reanalysis data are corrected to remove biases at diurnal to annual
timescales by merging with observational data for precipitation, air temperature,
and shortwave and longwave radiation. Precipitation and temperature are scaled
to match the Climatic Research Unit (CRU) TS3.0 data set42 on a monthly time-
scale. The diurnal cycle of precipitation is resampled from a statistical model
derived from the Tropical Rainfall Measurement Mission (TRMM) Multi-
Satellite Precipitation Analysis (TMPA) satellite-based data set43. The diurnal
range in air temperature is also adjusted to match the CRU TS3.0 data set. For
1984–2007, the shortwave and longwave radiation are scaled to match the NASA/
GEWEX Surface Radiation Budget (SRB) satellite based data set44 on a monthly
timescale. The data set is available from http://hydrology.princeton.edu/data.
pgf.php.
Alternative precipitation data sets. A set of four global precipitation data sets is
used to quantify the uncertainty in global precipitation. The data sets are CPC-Prec/
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